APPENDIX C

AIR QUALITY WORKSHEETS

EXPLANATION OF CHANGES MADE TO DEFAULT SETTINGS IN URBEMIS 2002

Project Name: SMC Bundy Campus nalysis Scenario: Proposed Project Fleet Mix

The following pages include the printed results of the air pollutant emissions modeling for one of the land use components of the proposed project. The air emissions modeling was conducted using the URBEMIS 2002 for Windows computer program developed for the Yolo-Solano Air Quality Management District in May 2003. URBEMIS 2002 is programmed with EMFAC 2002 emission factors developed by the California Air

As part of this analysis, changes have been made to several of the default values programmed into URBEMIS 2002. These changes were made to more accurately reflect the nature of the proposed land use.

Vehicle Trip Rates

The default vehicle trip rate values were changed to be consistent with the traffic impact analysis prepared

Vehicle Fleet Mix

0

0

URBEMIS 2002 is programmed with the following state-wide average vehicle fleet mix:

State-Wide Vehicle Type	Total	
Automobiles	54.7%	
Light-Duty Trucks <3,750 pounds	15.2%	
Light-Duty Trucks 3,751-5,750 pounds	16.2%	
Medium-Duty Trucks 5,751-8,500 pounds	7.3% _	
Light-Heavy-Duty Trucks 8,501-10,000 pounds	1.1%	
Light-Heavy-Duty Trucks 10,001-14,000 pound	0.3%	10.60% Total Truck
Medium-Heavy-Duty Trucks 14,001-33,000 por	1.0%	10.0070 10801 11001
Heavy-Heavy-Duty Trucks 33,001-60,000 pour	0.9%	
Line-Haul Vehicles	0.0% 🚽	
Urban Buses	0.2%	
Motorcycles	1.6%	
School Buses	0.1%	
Motor Homes	1.4%	

However, this state-wide average fleet mix is not appropriate for the majority of land use analyses. The project land use assessed in this analysis is identified below along with the total percentage of trucks (medium and heavy) that are expected for this land use. The following vehicle mix was calculated based on the percentage of trucks associated with this land use. The percentage of trucks for each land use

ITE	•		
Code Project Land Use:	Truck %	ADT	Truck #
540 Community College	0.44%	2,877	13
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0 -
0		0	0
ń		0	n

Project Totals: 2,877
Project Truck %: 0.44%

0

0

0

Vehicle Type Automobiles Light-Duty Trucks <3,750 pounds Light-Duty Trucks 3,751-5,750 pounds Medium-Duty Trucks 5,751-8,500 pounds Light-Heavy-Duty Trucks 8,501-10,000 pounds Light-Heavy-Duty Trucks 10,001-14,000 pound Medium-Heavy-Duty Trucks 14,001-33,000 pound Heavy-Heavy-Duty Trucks 33,001-60,000 pour Line-Haul Vehicles Urban Buses Motorcycles School Buses	Total 60.92% 16.93% 18.04% 0.30% 0.05% 0.01% 0.04% 0.04% 0.00% 0.22% 1.78% 0.11%	0.44% Total Trucl
School Buses Motor Homes	0.11% 1.56%	

EXPLANATION OF CHANGES MADE TO DEFAULT SETTINGS IN URBEMIS 2002

Project Name: SMC Bunday Campus nalysis Scenario: Existing Uses Fleet Mix

The following pages include the printed results of the air pollutant emissions modeling for one of the land use components of the proposed project. The air emissions modeling was conducted using the URBEMIS 2002 for Windows computer program developed for the Yolo-Solano Air Quality Management District in May 2003. URBEMIS 2002 is programmed with EMFAC 2002 emission factors developed by the California Air

As part of this analysis, changes have been made to several of the default values programmed into URBEMIS 2002. These changes were made to more accurately reflect the nature of the proposed land use.

Vehicle Trip Rates

The default vehicle trip rate values were changed to be consistent with the traffic impact analysis prepared

Vehicle Fleet Mix

URBEMIS 2002 is programmed with the following state-wide average vehicle fleet mix:

State-Wide Vehicle Type	Total	
Automobiles	56.1%	
Light-Duty Trucks <3,750 pounds	15.1%	
Light-Duty Trucks 3,751-5,750 pounds	15.5%	
Medium-Duty Trucks 5,751-8,500 pounds	6.8% _	
Light-Heavy-Duty Trucks 8,501-10,000 pour	ınds 1.0% 🖥	
Light-Heavy-Duty Trucks 10,001-14,000 por	ound 0.3% 9.90% Total	Truc
Medium-Heavy-Duty Trucks 14,001-33,000	poi 1.0%	1100
Heavy-Heavy-Duty Trucks 33,001-60,000 pe	oour 0.8%	
Line-Haul Vehicles	0.0% ᢖ	
Urban Buses	0.1%	
Motorcycles	1.6%	
School Buses	0.3%	
Motor Homes	1.4%	

However, this state-wide average fleet mix is not appropriate for the majority of land use analyses. The project land use assessed in this analysis is identified below along with the total percentage of trucks (medium and heavy) that are expected for this land use. The following vehicle mix was calculated based on the percentage of trucks associated with this land use. The percentage of trucks for each land use

ITE	•		
Code Project Land Use:	Truck %	ADT	Truck #
540 Community College	0.44%	2,440	11
0		0	0
0		0	. 0
0		0	0
0		0	0
0		0	. 0
0		0	0
0		0	0
0		0	0
0		. 0	0
0	-	0	0
0	·	. 0	0
	Project Totals:	2,440	11
	Project Truck %:	0.44%	

Vehicle Type Automobiles Light-Duty Trucks <3,750 pounds Light-Duty Trucks 3,751-5,750 pounds Medium-Duty Trucks 5,751-8,500 pounds Light-Heavy-Duty Trucks 8,501-10,000 pounds Light-Heavy-Duty Trucks 10,001-14,000 pound Medium-Heavy-Duty Trucks 14,001-33,000 pou Heavy-Heavy-Duty Trucks 33,001-60,000 pour Line-Haul Vehicles Urban Buses Motorcycles	Total 61.99% 16.69% 17.13% 0.30% 0.04% 0.01% 0.04% 0.04% 0.11% 1.77% 0.33%	0.44% Total Trucl
School Buses		
Motor Homes	1.55%	

Page: 1 09/15/2006 3:21 PM

Project Name:

URBEMIS 2002 For Windows 8.7.0

File Name: F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Existing Operational Emissions.urk

Existing Operational Emissions

Project Location: South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Summer)

AREA SOURCE EMISSION ESTIMATES

ROG NOX CO SO2 PM10
TOTALS (lbs/day,unmitigated) 0.42 0.62 1.30 0.00 0.00

OPERATIONAL (VEHICLE) EMISSION ESTIMATES

TOTALS (lbs/day, unmitigated) 19.44 19.73 268.12 0.16 21.15 TOTALS (lbs/day, mitigated) 18.53 18.74 254.65 0.16 20.09

SUM OF AREA AND OPERATIONAL EMISSION ESTIMATES

ROG NOx CO SO2 PM10
TOTALS (lbs/day,unmitigated) 19.86 20.35 269.42 0.16 21.15

Both Area and Operational Mitigation must be turned on to get a combined mitigated total.

Page: 2 09/15/2006 3:21 PM

URBEMIS 2002 For Windows 8.7.0

File Name: Project Name: F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Existing Operational Emissions.urk

Project Name: Existing Operational Emissions
Project Location: South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Winter)

AREA SOURCE EMISSION ESTIMATES

AREA	SOURCE	EMISSION	ESTIMATES

AREA SOURCE EMISSION ESTIMATES					
	ROG	NOx	CO	SO2	PM10
TOTALS (lbs/day,unmitigated)	0.30	0.62	0.52	0.00	0.00
OPERATIONAL (VEHICLE) EMISSION	ESTIMATES				
	ROG	NOx	CO	SO2	PM10
TOTALS (lbs/day,unmitigated)	21.02	29.57	259.53	0.14	21.15
TOTALS (lbs/day, mitigated)	19.97	28.08	246.50	0.13	20.09

SUM OF AREA AND OPERATIONAL EMISSION ESTIMATES

	ROG	NOx	CO	SO2	PM10
TOTALS (lbs/day,unmitigated)	21.32	30.18	260.05	0.14	21.15

Both Area and Operational Mitigation must be turned on to get a combined mitigated total.

Page: 3 09/15/2006 3:21 PM

URBEMIS 2002 For Windows 8.7.0

File Name: F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Existing Operational Emissions.urk
Project Name: Existing Operational Emissions
Project Location: South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Winter)

AREA SOURCE EMISSION ESTIMATES	(Winter	Pounds per	Day, Unmiti	lgated)	
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.04	0.62	0.52	0	0.00
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping - No winter emiss:	ions				
Consumer Prdcts	0.00	_	-	_	_
Architectural Coatings	0.25	-	=	_	-
TOTALS(lbs/day,unmitigated)	0.30	0.62	0.52	0.00	0.00

Page: 4 09/15/2006 3:21 PM

UNMITIGATED OPERATIONAL EMISSIONS

Junior college (2 yrs)	ROG 21.02	NOx 29.57		SO2 0.14	PM10 21.15
TOTAL EMISSIONS (lbs/day)	21.02	29.57	259.53	0.14	21.15

Does not include correction for passby trips.
Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2005 Temperature (F): 50 Season: Winter

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Total Units Trips
Junior college (2 yrs)		38.13 trips/1000 sq. ft.	64.00 2,440.00
		Sum of Total Total Total Vehicle Miles Trave	-

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	9	P	ercent Type	Non-Catalyst	Catalyst	Diesel
Light Auto			61.99	2.30	97.10	0.60
Light Truck	< 3,750	lbs	16.69	4.00	93.40	2.60
Light Truck	3,751- 5,	750	17.13	1.90	96.80	1.30
Med Truck	5,751- 8,	500	0.30	1.50	95.60	2.90
Lite-Heavy	8,501-10,	000	0.04	0.00	80.00	20.00
Lite-Heavy	10,001-14,	000	0.01	0.00	66.70	33.30
Med-Heavy	14,001-33,	000	0.04	10.00	20.00	70.00
Heavy-Heavy	33,001-60,	000	0.04	0.00	12.50	87.50
Line Haul >	60,000	lbs	0.00	0.00	0.00	100.00
Urban Bus			0.11	0.00	0.00	100.00
Motorcycle			1.77	87.50	12.50	0.00
School Bus			0.33	0.00	0.00	100.00
Motor Home			1.55	14.30	78.60	7.10

Travel Conditions

	Residential			Commercial		
	Home- Work	Home- Shop	Home- Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Rural Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Trip Speeds (mph)	35.0	40.0	40.0	40.0	40.0	40.0
% of Trips - Residential	20.0	37.0	43.0			
% of Trips - Commercial ()	hv land	1196)				

% of Trips - Commercial (by land use) Junior college (2 yrs)

5.0 2.5 92.5

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Junior college (2 yrs)	19.97	28.08	246.50	0.13	20.09
TOTAL EMISSIONS (lbs/day)	19.97	28.08	246.50	0.13	20.09
PERCENTAGE REDUCTION %	5	5	5	5	5

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2005 Temperature (F): 50 Season: Winter

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate			No. Units		Total Trips
Junior college (2 yrs)		36.21	trips/1000	sq.	ft.	64.00	2,	317.46
			Sum	of	Total	Trips	2,	317.46

Total Vehicle Miles Traveled 13,302.21

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	61.99	2.30	97.10	0.60
Light Truck < 3,750 l	.bs 16.69	4.00	93.40	2.60
Light Truck 3,751- 5,7	750 17.13	1.90	96.80	1.30
Med Truck 5,751-8,5	0.30	1.50	95.60	2.90
Lite-Heavy 8,501-10,0	0.04	0.00	80.00	20.00
Lite-Heavy 10,001-14,0	0.01	0.00	66.70	33.30
Med-Heavy 14,001-33,0	0.04	10.00	20.00	70.00
Heavy-Heavy 33,001-60,0	0.04	0.00	12.50	87.50
Line Haul > 60,000 l	.bs 0.00	0.00	0.00	100.00
Urban Bus	0.11	0.00	0.00	100.00
Motorcycle	1.77	87.50	12.50	0.00
School Bus	0.33	0.00	0.00	100.00
Motor Home	1.55	14.30	78.60	7.10

Travel Conditions

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Rural Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Trip Speeds (mph)	35.0	40.0	40.0	40.0	40.0	40.0
% of Trips - Residential	20.0	37.0	43.0			

% of Trips - Commercial (by land use) Junior college (2 yrs) 5.0 2.5 92.5 Page: 6 09/15/2006 3:21 PM

MITIGATION OPTIONS SELECTED

Non-Residential Mitigation Measures

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Transit Service Mitigation

Percent Reduction in Trips is 0.02%

Inputs Selected:

The Number of Daily Weekday Buses Stopping Within 1/4 Mile of Site is 2

The Number of Daily Rail or Bus Rapid Transit Stops Within 1/2 Mile of Site is 0

The Number of Dedicated Daily Shuttle Trips is 0

Non-Residential Pedestrian/Bicycle Friendliness Mitigation

Percent Reduction in Trips is 3%

Inputs Selected:

The Number of Intersections per Square Mile is 0

The Percent of Streets with Sidewalks on One Side is 0%

The Percent of Streets with Sidewalks on Both Sides is 100%

The Percent of Arterials/Collectors with Bike Lanes or where Suitable,

Direct Parallel Routes Exist is 0%

Page: 7 09/15/2006 3:21 PM

Changes made to the default values for Land Use Trip Percentages

The consumer products option switch changed from on to off.

Changes made to the default values for Area

The hearth option switch changed from on to off.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The light auto percentage changed from 56.1 to 61.99.

The light truck < 3750 lbs percentage changed from 15.1 to 16.69.

The light truck 3751-5750 percentage changed from 15.5 to 17.13.

The med truck 5751-8500 percentage changed from 6.8 to 0.30.

The lite-heavy truck 8501-10000 percentage changed from 1.0 to 0.04.

The lite-heavy truck 10001-14000 percentage changed from 0.3 to 0.01.

The med-heavy truck 14001-33000 percentage changed from 1.0 to 0.04.

The heavy-heavy truck 33001-60000 percentage changed from 0.8 to 0.04.

The urban bus percentage changed from 0.1 to 0.11.

The motorcycle percentage changed from 1.6 to 1.77.

The school bus percentage changed from 0.3 to 0.33.

The motorhome percentage changed from 1.4 to 1.55.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on. The Res and Non-Res Transit Service Mitigation changed from off to on. The Res and Non-Res Ped/Bike Mitigation changed from off to on.

The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0052. The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0052.

Page: 8 09/15/2006 3:21 PM

URBEMIS 2002 For Windows 8.7.0

File Name: Project Name: F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Existing Operational Emissions.urk Existing Operational Emissions

Project Location: South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

AREA SOURCE EMISSION ESTIMATES	(Summer	Pounds per	Day, Unmi	tigated)	
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.04	0.62	0.52	0	0.00
Hearth - No summer emissions					
Landscaping	0.12	0.00	0.78	0.00	0.00
Consumer Prdcts	0.00	-	_	_	_
Architectural Coatings	0.25	-	_	_	
TOTALS(lbs/day,unmitigated)	0.42	0.62	1.30	0.00	0.00

UNMITIGATED OPERATIONAL EMISSIONS

Junior college (2 yrs)	ROG	NOx	CO	SO2	PM10
	19.44	19.73	268.12	0.16	21.15
TOTAL EMISSIONS (lbs/day)	19.44	19.73	268.12	0.16	21.15

Does not include correction for passby trips.
Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2005 Temperature (F): 90 Season: Summer

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Units	Total Trips
Junior college (2 yrs)		38.13 trips/1000 sq. ft.	64.00 2	2,440.00
		Sum of Total Tr Total Vehicle Miles Trave	-	2,440.00 4,005.60

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	9	P	ercent Type	Non-Catalyst	Catalyst	Diesel
Light Auto			61.99	2.30	97.10	0.60
Light Truck	< 3,750	lbs	16.69	4.00	93.40	2.60
Light Truck	3,751- 5,	750	17.13	1.90	96.80	1.30
Med Truck	5,751- 8,	500	0.30	1.50	95.60	2.90
Lite-Heavy	8,501-10,	000	0.04	0.00	80.00	20.00
Lite-Heavy	10,001-14,	000	0.01	0.00	66.70	33.30
Med-Heavy	14,001-33,	000	0.04	10.00	20.00	70.00
Heavy-Heavy	33,001-60,	000	0.04	0.00	12.50	87.50
Line Haul >	60,000	lbs	0.00	0.00	0.00	100.00
Urban Bus			0.11	0.00	0.00	100.00
Motorcycle			1.77	87.50	12.50	0.00
School Bus			0.33	0.00	0.00	100.00
Motor Home			1.55	14.30	78.60	7.10

Travel Conditions

Junior college (2 yrs)

	Residential			Commercial		
Home-	Home-	Home-				
Work	Shop	Other	Commute	Non-Work	Customer	
11.5	4.9	6.0	10.3	5.5	5.5	
11.5	4.9	6.0	10.3	5.5	5.5	
35.0	40.0	40.0	40.0	40.0	40.0	
20.0	37.0	43.0				
v land	1156)					
1	Work 11.5 11.5 35.0 20.0	Work Shop 11.5 4.9 11.5 4.9 35.0 40.0	Work Shop Other 11.5 4.9 6.0 11.5 4.9 6.0 35.0 40.0 40.0 20.0 37.0 43.0	Work Shop Other Commute 11.5 4.9 6.0 10.3 11.5 4.9 6.0 10.3 35.0 40.0 40.0 40.0 20.0 37.0 43.0	Work Shop Other Commute Non-Work 11.5 4.9 6.0 10.3 5.5 11.5 4.9 6.0 10.3 5.5 35.0 40.0 40.0 40.0 40.0 20.0 37.0 43.0 40.0 40.0	

5.0 2.5 92.5

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Junior college (2 yrs)	18.53	18.74	254.65	0.16	20.09
TOTAL EMISSIONS (lbs/day)	18.53	18.74	254.65	0.16	20.09
PERCENTAGE REDUCTION %	5	5	5	5	5

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2005 Temperature (F): 90 Season: Summer

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		Units	Trips
Junior college (2 yrs)		36.21	trips/1000	sq. ft.	64.00	2,317.46
		To	Sum tal Vehicle	of Total Miles Tra	-	2,317.46 13,302.21

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	3	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto		61.99	2.30	97.10	0.60
Light Truck	< 3,750 lbs	16.69	4.00	93.40	2.60
Light Truck	3,751- 5,750	17.13	1.90	96.80	1.30
Med Truck	5,751- 8,500	0.30	1.50	95.60	2.90
Lite-Heavy	8,501-10,000	0.04	0.00	80.00	20.00
Lite-Heavy	10,001-14,000	0.01	0.00	66.70	33.30
Med-Heavy	14,001-33,000	0.04	10.00	20.00	70.00
Heavy-Heavy	33,001-60,000	0.04	0.00	12.50	87.50
Line Haul >	60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus		0.11	0.00	0.00	100.00
Motorcycle		1.77	87.50	12.50	0.00
School Bus		0.33	0.00	0.00	100.00
Motor Home		1.55	14.30	78.60	7.10

Travel Conditions

TIGVET CONGICIONS								
	Residential				Commercial			
	Home-	Home-	Home-					
	Work	Shop	Other	Commute	Non-Work	Customer		
Urban Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5		
Rural Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5		
Trip Speeds (mph)	35.0	40.0	40.0	40.0	40.0	40.0		
% of Trips - Residential	20.0	37.0	43.0					

% of Trips - Commercial (by land use) Junior college (2 yrs)

5.0 2.5 92.5

No. Total

Page: 11 09/15/2006 3:21 PM

MITIGATION OPTIONS SELECTED

Non-Residential Mitigation Measures

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Transit Service Mitigation

Percent Reduction in Trips is 0.02%

Inputs Selected:

The Number of Daily Weekday Buses Stopping Within 1/4 Mile of Site is 2

The Number of Daily Rail or Bus Rapid Transit Stops Within 1/2 Mile of Site is $\,$ 0

The Number of Dedicated Daily Shuttle Trips is 0

Non-Residential Pedestrian/Bicycle Friendliness Mitigation

Percent Reduction in Trips is 3%

Inputs Selected:

The Number of Intersections per Square Mile is 0

The Percent of Streets with Sidewalks on One Side is 0%

The Percent of Streets with Sidewalks on Both Sides is 100%

The Percent of Arterials/Collectors with Bike Lanes or where Suitable,

Direct Parallel Routes Exist is 0%

Page: 12 09/15/2006 3:21 PM

Changes made to the default values for Land Use Trip Percentages

The consumer products option switch changed from on to off.

Changes made to the default values for Area

The hearth option switch changed from on to off.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The light auto percentage changed from 56.1 to 61.99.

The light truck < 3750 lbs percentage changed from 15.1 to 16.69.

The light truck 3751-5750 percentage changed from 15.5 to 17.13.

The med truck 5751-8500 percentage changed from 6.8 to 0.30.

The lite-heavy truck 8501-10000 percentage changed from 1.0 to 0.04.

The lite-heavy truck 10001-14000 percentage changed from 0.3 to 0.01.

The med-heavy truck 14001-33000 percentage changed from 1.0 to 0.04.

The heavy-heavy truck 33001-60000 percentage changed from 0.8 to 0.04.

The urban bus percentage changed from 0.1 to 0.11.

The motorcycle percentage changed from 1.6 to 1.77.

The school bus percentage changed from 0.3 to 0.33.

The motorhome percentage changed from 1.4 to 1.55.

The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0052. The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0052.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on. The Res and Non-Res Transit Service Mitigation changed from off to on.

The Res and Non-Res Ped/Bike Mitigation changed from off to on.

Page: 1 09/15/2006 3:19 PM

URBEMIS 2002 For Windows 8.7.0

F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Proposed Project Construction Emis SMC Bundy Campus - Construction Emissions South Coast Air Basin (Los Angeles area) File Name: Project Name:

Project Location: On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

> SUMMARY REPORT (Pounds/Day - Summer)

CONSTRUCTION EMISSION ESTIMATES

CONDINCETION BRIEDSION EDITINIES							
					PM10	PM10	PM10
*** 2007 ***	ROG	NOx	CO	SO2	TOTAL	EXHAUST	DUST
TOTALS (lbs/day,unmitigated)	6.98	90.59	44.15	0.11	238.61	2.36	236.25
TOTALS (lbs/day, mitigated)	6.98	90.59	44.15	0.11	37.65	2.36	35.29
					PM10	PM10	PM10
*** 2008 ***	ROG	NOx	CO	SO2	TOTAL	EXHAUST	DUST
TOTALS (lbs/day,unmitigated)	5.28	33.94	44.07	0.01	237.27	1.02	236.25
TOTALS (lbs/day, mitigated)	5.28	33.94	44.07	0.01	36.31	1.02	35.29
					PM10	PM10	PM10
*** 2009 ***	ROG	NOx	CO	SO2	TOTAL	EXHAUST	DUST
TOTALS (lbs/day,unmitigated)	13.25	24.59	34.14	0.00	0.82	0.80	0.02
TOTALS (lbs/day, mitigated)	13.25	24.59	34.14	0.00	0.82	0.80	0.02

Page: 2 09/15/2006 3:19 PM

URBEMIS 2002 For Windows 8.7.0

File Name: Project Name: F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Proposed Project Construction Emis SMC Bundy Campus - Construction Emissions Project Location: South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

Construction Start Month and Year: January, 2007 Construction Duration: 28

Total Land Use Area to be Developed: 4 acres Maximum Acreage Disturbed Per Day: 2 acres Single Family Units: 0 Multi-Family Units: 0

Retail/Office/Institutional/Industrial Square Footage: 38205

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (lbs/day)

CONSTRUCTION EMISSION ESTIMAT	ES UNMITIC	GATED (lbs.	/day)		D1/10	D141.0	D161.0
Source *** 2007***	ROG	NOx	CO	SO2	PM10 TOTAL	PM10 EXHAUST	PM10 DUST
Phase 1 - Demolition Emission	ns						
Fugitive Dust	_	_	_	_	17.64	_	17.64
Off-Road Diesel	4.18	29.41	32.52	-	1.19	1.19	0.00
On-Road Diesel	2.76	61.07	10.29	0.11	1.42	1.17	0.25
Worker Trips	0.04	0.11	1.10	0.00	0.00	0.00	0.00
Maximum lbs/day	6.98	90.59	43.91	0.11	20.25	2.36	17.89
Phase 2 - Site Grading Emissi	ons						
Fugitive Dust				-	236.22	_	236.22
Off-Road Diesel On-Road Diesel	5.07	30.41	43.06	-	1.03	1.03	0.00
On-Road Diesel	0.20	4.33	0.73	0.01	0.10	0.08	0.02
MOLKEL ILIDS	0.03	0.02	0.36	0.00	0.01	0.00	0.01
Maximum lbs/day	5.30	34.76	44.15	0.01	237.36	1.11	236.25
Phase 3 - Building Constructi							
Bldg Const Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Bldg Const Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	-	-	-	-
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max lbs/day all phases	6.98	90.59	44.15	0.11	238.61	2.36	236.25
*** 2000***							
*** 2008*** Phase 1 - Demolition Emission	n e						
Fugitive Dust	-	_	_	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips Maximum lbs/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phase 2 - Site Grading Emissi	ons						
_		_	_	_	236.22	_	236.22
Off-Road Diesel	5.07	29.97	43.06	_	0.94	0.94	0.00
Fugitive Dust Off-Road Diesel On-Road Diesel	0.18	3.95	0.68	0.01	0.10	0.08	0.02
Worker Trips	0.03	0.02	0.33	0.00	0.01	0.00	0.01
Maximum lbs/day	5.28	33.94	44.07	0.01	237.27	1.02	236.25
Phase 3 - Building Constructi	.on						
Bldg Const Off-Road Diesel	2.09	12.82	17.34	_	0.41	0.41	0.00
Bldg Const Worker Trips	0.07	0.04	0.82	0.00	0.01	0.00	0.01
Arch Coatings Off-Gas	0.00	-	-	-	_	_	_
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	_	_	-	_	_	_
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	2.15	12.86	18.16	0.00	0.42	0.41	0.01
Max lbs/day all phases	5.28	33.94	44.07	0.01	237.27	1.02	236.25

*** 2009***

าร						
-	_	_	=	0.00	=	0.00
0.00	0.00	0.00	=	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
ions						
_	_	_	=	0.00	-	0.00
0.00	0.00	0.00	-	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
ion						
2.09	12.63	17.48	-	0.40	0.40	0.00
0.06	0.04	0.75	0.00	0.01	0.00	0.01
9.03	-	-	-	-	-	-
0.06	0.04	0.75	0.00	0.01	0.00	0.01
0.17	_	_	_	_	_	_
1.81	11.32	14.93	_	0.39	0.39	0.00
0.03		0.11	0.00		0.01	0.00
						0.00
13.25	24.59	34.14	0.00	0.82	0.80	0.02
13.25	24.59	34.14	0.00	0.82	0.80	0.02
: Jan '07	2000					
feet): 419	999.034176					
2334						
	Hors	sepower	Load Factor	Hour	s/Day	
5		352	0.590	6	.0	
rs .		165	0.465	6	.0	
		62	0.515			
Feb '07						
	Hore	acromor.	Iood Foator	Цолг	d /Darr	
CG						
5	-	102	0.405	6	. 0	
	0.00 0.00 0.00 0.00 ions - 0.00 0.00 0.00 0.00 ion 2.09 0.06 9.03 0.06 9.03 0.06 0.17 1.81 0.03 0.01 13.25 13.25	0.00 0.01 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59 13.25 24.59	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-	0.00

Phase 3 - Building Construction Assumptions Start Month/Year for Phase 3: Apr '08

Phase 3 Duration: 13 months

Start Month/Year for SubPhase Building: Apr '08

SubPhase Building Duration: 13 months

Off-Road Equipment

011 1000	a negatification							
No.	Туре	Horsepower	Load Factor	Hours/Day				
2	Rough Terrain Forklifts	94	0.475	6.0				
1	Skid Steer Loaders	62	0.515	6.0				
1	Tractor/Loaders/Backhoes	79	0.465	6.0				
Start Mo	onth/Year for SubPhase Architectura	l Coatings: N	Mar '09					
SubPhase Architectural Coatings Duration: 2 months								
Start Month/Year for SubPhase Asphalt: Apr '09								
SubPhase	SubPhase Asphalt Duration: 1 months							

SubPhase Asphalt Duration: 1 months Acres to be Paved: 1.4 Off-Road Equipment

No. Type Load Factor Hours/Day Horsepower 1 Pavers 1 Paving Equipment 0.590 6.0 111 0.530 6.0

CONSTRUCTION EMISSION ESTIMATES MITIGATED (lbs/day)

PM10 _ PML0 TOTAL EXHAUST PM10 PM10 NOx CO SO2 Source *** 2007*** ROG DUST

Phase 1 - Demolition Emissions

Fugitive Dust Off-Road Diesel	- 4.18	- 29.41	- 32.52	<u>-</u>	17.64 1.19	- 1.19	17.64 0.00
On-Road Diesel	2.76	61.07	10.29	0.11	1.42	1.17	0.00
Worker Trips	0.04	0.11	1.10	0.00	0.00	0.00	0.00
Maximum lbs/day	6.98	90.59	43.91	0.11	20.25	2.36	17.89
Phase 2 - Site Grading Emissi Fugitive Dust	lons	_	_	_	35.26	_	35.26
Off-Road Diesel	5.07	30.41	43.06	_	1.03	1.03	0.00
On-Road Diesel	0.20	4.33	0.73	0.01	0.10	0.08	0.02
Worker Trips	0.03	0.02	0.36	0.00	0.01	0.00	0.01
Maximum lbs/day	5.30	34.76	44.15	0.01	36.40	1.11	35.29
Phase 3 - Building Constructi Bldg Const Off-Road Diesel	lon 0.00	0.00	0.00	_	0.00	0.00	0.00
Bldg Const Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arch Coatings Off-Gas	0.00	-	_	_	_	_	_
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas Asphalt Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max lbs/day all phases	6.98	90.59	44.15	0.11	37.65	2.36	35.29
*** 2008***							
Phase 1 - Demolition Emissior Fugitive Dust	1S -	_	_	_	0.00	_	0.00
Off-Road Diesel	0.00	0.00	0.00	_	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phase 2 - Site Grading Emissi	lons				25 26		25 26
Fugitive Dust Off-Road Diesel	5.07	- 29.97	43.06	-	35.26 0.94	0.94	35.26 0.00
On-Road Diesel	0.18	3.95	0.68	0.01	0.10	0.08	0.02
Worker Trips	0.03	0.02	0.33	0.00	0.01	0.00	0.01
Maximum lbs/day	5.28	33.94	44.07	0.01	36.31	1.02	35.29
Phase 3 - Building Constructi		12.82	17.34		0.41	0.41	0.00
Bldg Const Off-Road Diesel Bldg Const Worker Trips	2.09 0.07	0.04	0.82	0.00	0.01	0.41	0.00
Arch Coatings Off-Gas	0.00	-	-	-	-	-	-
Arch Coatings Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Off-Gas	0.00	-	-	_	-	-	-
Asphalt Off-Road Diesel Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	2.15	12.86	18.16	0.00	0.42	0.41	0.01
Max lbs/day all phases	5.28	33.94	44.07	0.01	36.31	1.02	35.29
*** 2009***							
Phase 1 - Demolition Emission	ıs						
Fugitive Dust	_	_	_	_	0.00	_	0.00
Off-Road Diesel On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phase 2 - Site Grading Emissi					0.00		0.00
Fugitive Dust Off-Road Diesel	0.00	0.00	0.00	-	0.00	0.00	0.00
On-Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phase 3 - Building Constructi		10.60	15 40		0.40	0.40	0.00
Bldg Const Off-Road Diesel Bldg Const Worker Trips	2.09 0.06	12.63 0.04	17.48 0.75	0.00	0.40 0.01	0.40	0.00 0.01
Arch Coatings Off-Gas	9.03	0.04	0.75	-	-	-	- 0.01
Arch Coatings Worker Trips	0.06	0.04	0.75	0.00	0.01	0.00	0.01
Asphalt Off-Gas	0.17	11 22	14.02	-	0.20	- 0 20	- 0.00
Asphalt Off-Road Diesel	1.81	11.32	14.93	_	0.39	0.39	0.00

```
Page: 5
09/15/2006 3:19 PM
```

Asphalt On-Road Diesel	0.03	0.56	0.11	0.00	0.01	0.01	0.00
Asphalt Worker Trips	0.01	0.01	0.12	0.00	0.00	0.00	0.00
Maximum lbs/day	13.25	24.59	34.14	0.00	0.82	0.80	0.02
Max lbs/day all phases	13.25	24.59	34.14	0.00	0.82	0.80	0.02

Construction-Related Mitigation Measures

```
Phase 2: Soil Disturbance: Apply soil stabilizers to inactive areas
  Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 30.0%)
Phase 2: Soil Disturbance: Replace ground cover in disturbed areas quickly
  Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 15.0%)
Phase 2: Soil Disturbance: Water exposed surfaces - 2x daily
 Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 34.0%)
Phase 2: Stockpiles: Cover all stock piles with tarps
 Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 9.5%)
Phase 2: Unpaved Roads: Water all haul roads 2x daily
 Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 30.0%)
Phase 2: Unpaved Roads: Reduce speed on unpaved roads to < 15 mph
 Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 40.0%)
Phase 1 - Demolition Assumptions
```

Start Month/Year for Phase 1: Jan '07

Phase 1 Duration: 1 months

Building Volume Total (cubic feet): 462000 Building Volume Daily (cubic feet): 41999.034176 On-Road Truck Travel (VMT): 2334

Off-Road Equipment

lo.	Type	Horsepower	Load Factor	Hours/Day
1	Rubber Tired Dozers	352	0.590	6.0
1	Rubber Tired Loaders	165	0.465	6.0
1	Skid Steer Loaders	62	0.515	6.0

Phase 2 - Site Grading Assumptions Start Month/Year for Phase 2: Feb '07 Phase 2 Duration: 14 months On-Road Truck Travel (VMT): 166

Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Excavators	180	0.580	6.0
1	Graders	174	0.575	6.0
1	Off Highway Trucks	417	0.490	3.0
1	Rubber Tired Loaders	165	0.465	6.0

Phase 3 - Building Construction Assumptions

Start Month/Year for Phase 3: Apr '08

Phase 3 Duration: 13 months

Start Month/Year for SubPhase Building: Apr '08

SubPhase Building Duration: 13 months

Off-Road Equipment

OLL ICC	Jaa naarpmene			
No.	Type	Horsepower	Load Factor	Hours/Day
2	Rough Terrain Forklifts	94	0.475	6.0
1	Skid Steer Loaders	62	0.515	6.0
1	Tractor/Loaders/Backhoes	79	0.465	6.0
Start	Month/Year for SubPhase Architectural	Coatings:	Mar '09	

SubPhase Architectural Coatings Duration: 2 months

Start Month/Year for SubPhase Asphalt: Apr '09

SubPhase Asphalt Duration: 1 months

Acres to be Paved: 1.4

Off-Road Equipment

No.	Type	Horsepower	Load Factor	Hours/Day
1	Pavers	132	0.590	6.0
1	Paving Equipment	111	0.530	6.0

Page: 6 09/15/2006 3:19 PM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Construction

The user has overridden the Default Phase Lengths
Site Grading Fugitive Dust Option changed from Level 1 to Level 2
Architectural Coatings: # ROG/ft2 (residential) changed from 0.0185 to 0.0052
Architectural Coatings: # ROG/ft2 (non-res) changed from 0.0185 to 0.0052
Phase 2 mitigation measure Soil Disturbance: Apply soil stabilizers to inactive areas has been changed from off to on.
Phase 2 mitigation measure Soil Disturbance: Replace ground cover in disturbed areas quickly has been changed from off to on.
Phase 2 mitigation measure Soil Disturbance: Water exposed surfaces - 2x daily

has been changed from off to on.

Phase 2 mitigation measure Stockpiles: Cover all stock piles with tarps has been changed from off to on.

Phase 2 mitigation measure Unpaved Roads: Water all haul roads 2x daily has been changed from off to on.

Phase 2 mitigation measure Unpaved Roads: Reduce speed on unpaved roads to < 15 mph has been changed from off to on.

Page: 1

09/15/2006 3:22 PM

URBEMIS 2002 For Windows 8.7.0

File Name: Project Name: F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Proposed Project Operational Emiss SMC Bundy Campus - Operational Emissions

South Coast Air Basin (Los Angeles area)

Project Location: On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Pounds/Day - Summer)

AREA	SOURCE	EMISSION	ESTIMATES

AREA SOURCE EMISSION ESTIMATES					
	ROG	NOx	CO	SO2	PM10
TOTALS (lbs/day,unmitigated)	0.27	0.38	0.94	0.00	0.00
OPERATIONAL (VEHICLE) EMISSION	ESTIMATES				
	ROG	NOx	CO	S02	PM10
TOTALS (lbs/day,unmitigated)	15.00	15.12	211.14	0.15	24.90
TOTALS (lbs/day, mitigated)	14.28	14.36	200.54	0.14	23.65

SUM OF AREA AND OPERATIONAL EMISSION ESTIMATES

		ROG	NOx	CO	SO2	PM10
TOTALS	(lbs/day,unmitigated)	15.27	15.50	212.08	0.15	24.90

Both Area and Operational Mitigation must be turned on to get a combined mitigated total.

Page: 2

09/15/2006 3:22 PM

Project Location:

URBEMIS 2002 For Windows 8.7.0

File Name: F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Proposed Project Operational Emiss
Project Name: SMC Bundy Campus - Operational Emissions

SMC Bundy Campus - Operational Emissions South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Winter)

AREA SOURCE EMISSION ESTIMATES

ROG NOX CO SO2 PM10 TOTALS (lbs/day,unmitigated) 0.18 0.37 0.31 0.00 0.00

OPERATIONAL (VEHICLE) EMISSION ESTIMATES

ROG NOX CO SO2 PM10

TOTALS (lbs/day, unmitigated) 16.51 22.61 204.09 0.12 24.90 TOTALS (lbs/day, mitigated) 15.68 21.47 193.84 0.11 23.65

SUM OF AREA AND OPERATIONAL EMISSION ESTIMATES

ROG NOX CO SO2 PM10
TOTALS (lbs/day,unmitigated) 16.69 22.97 204.40 0.12 24.90

Both Area and Operational Mitigation must be turned on to get a combined mitigated total.

Page: 3 09/15/2006 3:22 PM

URBEMIS 2002 For Windows 8.7.0

F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Proposed Project Operational Emiss SMC Bundy Campus - Operational Emissions South Coast Air Basin (Los Angeles area) File Name: Project Name:

Project Location: On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

> DETAIL REPORT (Pounds/Day - Winter)

AREA SOURCE EMISSION ESTIMATE	S (Winter	Pounds per	Day, Unmiti	.gated)	
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.03	0.37	0.31	0	0.00
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping - No winter emis	sions				
Consumer Prdcts	0.00	_	=	-	_
Architectural Coatings	0.15	_	=	-	_
TOTALS(lbs/day,unmitigated)	0.18	0.37	0.31	0.00	0.00
Landscaping - No winter emis Consumer Prdcts Architectural Coatings	0.00 0.15	-	-	-	

Page: 4 09/15/2006 3:22 PM

UNMITIGATED OPERATIONAL EMISSIONS

Junior college (2 yrs)	ROG	NOx	CO	SO2	PM10
	16.51	22.61	204.09	0.12	24.90
TOTAL EMISSIONS (lbs/day)	16.51	22.61	204.09	0.12	24.90

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Temperature (F): 50 Season: Winter

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Units	Total Trips
Junior college (2 yrs)		75.30 trips/1000 sq. ft.	38.21 2	,876.84
		Sum of Total Tri Total Vehicle Miles Travel	-	,876.84 ,513.04

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	9	F	ercent Type	Non-Catalyst	Catalyst	Diesel
Light Auto			60.92	1.10	98.70	0.20
Light Truck	< 3,750	lbs	16.93	2.00	96.00	2.00
Light Truck	3,751- 5,	750	18.04	1.20	98.10	0.70
Med Truck	5,751- 8,	500	0.30	1.40	95.90	2.70
Lite-Heavy	8,501-10,	000	0.05	0.00	81.80	18.20
Lite-Heavy	10,001-14,	000	0.01	0.00	66.70	33.30
Med-Heavy	14,001-33,	000	0.04	0.00	20.00	80.00
Heavy-Heavy	33,001-60,	000	0.04	0.00	11.10	88.90
Line Haul >	60,000	lbs	0.00	0.00	0.00	100.00
Urban Bus			0.22	0.00	50.00	50.00
Motorcycle			1.78	68.80	31.20	0.00
School Bus			0.11	0.00	0.00	100.00
Motor Home			1.56	7.10	85.70	7.20

Travel Conditions

	Residential				Commercial		
	Home- Work	Home- Shop	Home- Other	Commute	Non-Work	Customer	
Urban Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5	
Rural Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5	
Trip Speeds (mph)	35.0	40.0	40.0	40.0	40.0	40.0	
% of Trips - Residential	20.0	37.0	43.0				
% of Trips - Commercial (hv land	1 1196)					

% of Trips - Commercial (by land use) Junior college (2 yrs)

5.0 2.5 92.5

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Junior college (2 yrs)	15.68	21.47	193.84	0.11	23.65
TOTAL EMISSIONS (lbs/day)	15.68	21.47	193.84	0.11	23.65
PERCENTAGE REDUCTION %	5	5	5	5	5

Does not include correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Temperature (F): 50 Season: Winter

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Total Units Trips
Junior college (2 yrs)		71.52 trips/1000 sq. ft	38.21 2,732.36
		Sum of Tot	al Tring 2 732 36

Sum of Total Trips 2,732.36
Total Vehicle Miles Traveled 15,683.72

Vehicle Assumptions:

Fleet Mix:

Vehicle Type		Percent Ty	pe Non-Cataly	yst Catalyst	Diesel
Light Auto		60.92	1.10	98.70	0.20
Light Truck <	< 3,750 lk	os 16.93	2.00	96.00	2.00
Light Truck	3,751- 5,75	18.04	1.20	98.10	0.70
Med Truck	5,751- 8,50	0.30	1.40	95.90	2.70
Lite-Heavy	8,501-10,00	0.05	0.00	81.80	18.20
Lite-Heavy 1	10,001-14,00	0.01	0.00	66.70	33.30
Med-Heavy 1	L4,001-33,00	0.04	0.00	20.00	80.00
Heavy-Heavy 3	33,001-60,00	0.04	0.00	11.10	88.90
Line Haul > 6	50,000 lk	os 0.00	0.00	0.00	100.00
Urban Bus		0.22	0.00	50.00	50.00
Motorcycle		1.78	68.80	31.20	0.00
School Bus		0.11	0.00	0.00	100.00
Motor Home		1.56	7.10	85.70	7.20

Travel Conditions

Travel Conditions						
		Residential			Commercial	
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Rural Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Trip Speeds (mph)	35.0	40.0	40.0	40.0	40.0	40.0
% of Trips - Residential	20.0	37.0	43.0			

% of Trips - Commercial (by land use) Junior college (2 yrs)

5.0 2.5 92.5

Page: 6 09/15/2006 3:22 PM

MITIGATION OPTIONS SELECTED

Non-Residential Mitigation Measures

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Transit Service Mitigation

Percent Reduction in Trips is 0.02%

Inputs Selected:

The Number of Daily Weekday Buses Stopping Within 1/4 Mile of Site is 2

The Number of Daily Rail or Bus Rapid Transit Stops Within 1/2 Mile of Site is $\,$ 0

The Number of Dedicated Daily Shuttle Trips is 0

Non-Residential Pedestrian/Bicycle Friendliness Mitigation

Percent Reduction in Trips is 3%

Inputs Selected:

The Number of Intersections per Square Mile is 0

The Percent of Streets with Sidewalks on One Side is 0%

The Percent of Streets with Sidewalks on Both Sides is 100%

The Percent of Arterials/Collectors with Bike Lanes or where Suitable,

Direct Parallel Routes Exist is 0%

Page: 7 09/15/2006 3:22 PM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The hearth option switch changed from on to off.

The consumer products option switch changed from on to off. The landscape year changed from 2005 to 2010. The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0052. The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0052. Changes made to the default values for Operations The mitigation option switch changed from off to on.

The light auto percentage changed from 54.7 to 60.92. The light truck < 3750 lbs percentage changed from 15.2 to 16.93. The light truck 3751-5750 percentage changed from 16.2 to 18.04. The med truck 5751-8500 percentage changed from 7.3 to 0.30. The lite-heavy truck 8501-10000 percentage changed from 1.1 to 0.05. The lite-heavy truck 10001-14000 percentage changed from 0.3 to 0.01. The med-heavy truck 14001-33000 percentage changed from 1.0 to 0.04. The heavy-heavy truck 33001-60000 percentage changed from 0.9 to 0.04. The urban bus percentage changed from 0.2 to 0.22. The motorcycle percentage changed from 1.6 to 1.78. The school bus percentage changed from 0.1 to 0.11. The motorhome percentage changed from 1.4 to 1.56. The operational emission year changed from 2005 to 2010. The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

The Res and Non-Res Transit Service Mitigation changed from off to on.

The Res and Non-Res Ped/Bike Mitigation changed from off to on.

Page: 8 09/15/2006 3:22 PM

URBEMIS 2002 For Windows 8.7.0

F:\MSWord 2005 Projects\SMC Bundy Campus\AQ Data\URBEMIS Runs\Proposed Project Operational Emiss SMC Bundy Campus - Operational Emissions South Coast Air Basin (Los Angeles area) File Name: Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

AREA SOURCE EMISSION ESTIMATES	(Summer	Pounds per	Day, Unmit:	igated)	
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.03	0.37	0.31	0	0.00
Hearth - No summer emissions					
Landscaping	0.09	0.01	0.63	0.00	0.00
Consumer Prdcts	0.00	-	=	=	_
Architectural Coatings	0.15	-	=	=	_
TOTALS(lbs/day,unmitigated)	0.27	0.38	0.94	0.00	0.00

UNMITIGATED OPERATIONAL EMISSIONS

Junior college (2 yrs)	ROG	NOx	CO	SO2	PM10
	15.00	15.12	211.14	0.15	24.90
TOTAL EMISSIONS (lbs/day)	15.00	15.12	211.14	0.15	24.90

Does not include correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Temperature (F): 90 Season: Summer

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Units	Total Trips
Junior college (2 yrs)		75.30 trips/1000 sq. ft.	38.21	2,876.84
		0 5 - 1 - 1		0 000 04

Sum of Total Trips 2,876.84
Total Vehicle Miles Traveled 16,513.04

Vehicle Assumptions:

Fleet Mix:

Percent Type	Non-Catalyst	Catalyst	Diesel
60.92	1.10	98.70	0.20
s 16.93	2.00	96.00	2.00
0 18.04	1.20	98.10	0.70
0 0.30	1.40	95.90	2.70
0 0.05	0.00	81.80	18.20
0 0.01	0.00	66.70	33.30
0 0.04	0.00	20.00	80.00
0 0.04	0.00	11.10	88.90
s 0.00	0.00	0.00	100.00
0.22	0.00	50.00	50.00
1.78	68.80	31.20	0.00
0.11	0.00	0.00	100.00
1.56	7.10	85.70	7.20
	60.92 s 16.93 0 18.04 0 0.30 0 0.05 0 0.01 0 0.04 s 0.00 0.22 1.78 0.11	60.92 1.10 s 16.93 2.00 0 18.04 1.20 0 0.30 1.40 0 0.05 0.00 0 0.01 0.00 0 0.04 0.00 0 0.04 0.00 s 0.00 0.00 0 0.22 0.00 1.78 68.80 0.11 0.00	60.92 1.10 98.70 s 16.93 2.00 96.00 0 18.04 1.20 98.10 0 0.30 1.40 95.90 0 0.05 0.00 81.80 0 0.01 0.00 66.70 0 0.04 0.00 20.00 0 0.04 0.00 11.10 s 0.00 0.00 0.00 0.22 0.00 50.00 1.78 68.80 31.20 0.11 0.00 0.00

Travel Conditions

TIAVEL CONDICTORS						
		Residential			Commercial	
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Rural Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Trip Speeds (mph)	35.0	40.0	40.0	40.0	40.0	40.0
% of Trips - Residential	20.0	37.0	43.0			
 						

% of Trips - Commercial (by land use)
Junior college (2 yrs) 5.0 2.5 92.5

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Junior college (2 yrs)	14.28	14.36	200.54	0.14	23.65
TOTAL EMISSIONS (lbs/day)	14.28	14.36	200.54	0.14	23.65
PERCENTAGE REDUCTION %	5	5	5	5	5

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Temperature (F): 90 Season: Summer

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate		otal rips
Junior college (2 yrs)		71.52 trips/1000 sq. ft.	38.21 2,73	2.36
		Sum of Total T Total Vehicle Miles Trav		32.36 33.72

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	60.92	1.10	98.70	0.20
Light Truck < 3,750	lbs 16.93	2.00	96.00	2.00
Light Truck 3,751-5	,750 18.04	1.20	98.10	0.70
Med Truck 5,751-8	,500 0.30	1.40	95.90	2.70
Lite-Heavy 8,501-10	,000 0.05	0.00	81.80	18.20
Lite-Heavy 10,001-14	,000 0.01	0.00	66.70	33.30
Med-Heavy 14,001-33	,000 0.04	0.00	20.00	80.00
Heavy-Heavy 33,001-60	,000 0.04	0.00	11.10	88.90
Line Haul > 60,000	lbs 0.00	0.00	0.00	100.00
Urban Bus	0.22	0.00	50.00	50.00
Motorcycle	1.78	68.80	31.20	0.00
School Bus	0.11	0.00	0.00	100.00
Motor Home	1.56	7.10	85.70	7.20

Travel Conditions

Traver conditions						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Rural Trip Length (miles)	11.5	4.9	6.0	10.3	5.5	5.5
Trip Speeds (mph)	35.0	40.0	40.0	40.0	40.0	40.0
% of Trips - Residential	20.0	37.0	43.0			

% of Trips - Commercial (by land use) Junior college (2 yrs)

5.0 2.5 92.5

Page: 11 09/15/2006 3:22 PM

MITIGATION OPTIONS SELECTED

Non-Residential Mitigation Measures

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Transit Service Mitigation

Percent Reduction in Trips is 0.02%

Inputs Selected:

The Number of Daily Weekday Buses Stopping Within 1/4 Mile of Site is 2

The Number of Daily Rail or Bus Rapid Transit Stops Within 1/2 Mile of Site is $\,$ 0

The Number of Dedicated Daily Shuttle Trips is 0

Non-Residential Pedestrian/Bicycle Friendliness Mitigation

Percent Reduction in Trips is 3%

Inputs Selected:

The Number of Intersections per Square Mile is 0

The Percent of Streets with Sidewalks on One Side is 0%

The Percent of Streets with Sidewalks on Both Sides is 100%

The Percent of Arterials/Collectors with Bike Lanes or where Suitable,

Direct Parallel Routes Exist is 0%

Page: 12 09/15/2006 3:22 PM

Changes made to the default values for Land Use Trip Percentages

The consumer products option switch changed from on to off.

Changes made to the default values for Area

The hearth option switch changed from on to off.

The landscape year changed from 2005 to 2010.

The residential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0052. The nonresidential Arch. Coatings ROG emission factor changed from 0.0185 to 0.0052. Changes made to the default values for Operations

The mitigation option switch changed from off to on. The light auto percentage changed from 54.7 to 60.92. The light truck < 3750 lbs percentage changed from 15.2 to 16.93. The light truck 3751-5750 percentage changed from 16.2 to 18.04. The med truck 5751-8500 percentage changed from 7.3 to 0.30. The lite-heavy truck 8501-10000 percentage changed from 1.1 to 0.05. The lite-heavy truck 10001-14000 percentage changed from 0.3 to 0.01. The med-heavy truck 14001-33000 percentage changed from 1.0 to 0.04. The heavy-heavy truck 33001-60000 percentage changed from 0.9 to 0.04.

The urban bus percentage changed from 0.2 to 0.22. The motorcycle percentage changed from 1.6 to 1.78.

The school bus percentage changed from 0.1 to 0.11.

The motorhome percentage changed from 1.4 to 1.56.

The operational emission year changed from 2005 to 2010.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

The Res and Non-Res Transit Service Mitigation changed from off to on.

The Res and Non-Res Ped/Bike Mitigation changed from off to on.

Two Acre Site Example - Demolition Phase

Example		Construction Activity		_
Two Acre Site		Demolition (2007)	33,0	55 Square Foot Structure ^a
Demolition Schedule -	22	2 days ^a		
Equipment Type ^{a,b}	No. of Equipment	hr/day	Crew Size	
Skid Steer Loaders	1	6.0	8	
Rubber Tired Dozers	1	6.0		
Rubber Tired Loaders	1	6.0		
Construction Equipment Emission Factors				
	CO	NOx	PM10	
Equipment Type ^c	lb/hr	lb/hr	lb/hr	
Skid Steer Loaders	0.204	0.287	0.025	
Rubber Tired Dozers	1.024	2.817	0.112	
Rubber Tired Loaders	0.425	1.111	0.063	
Building Dimensions				
Description ^a	Width of Building	Length of Building ft	Height of Building	
Total Project	70	220	30	
Fugitive Dust Material Handling				
Aerodynamic Particle Size Multiplier ^d	Mean Wind Speed ^e mph	Moisture Content ^f	Debris Handled ^g ton/day	
0.35	10	2.0	69	
Construction Vehicle (Mobile Source) Emission Factors	S			
	СО	NOx	PM10	
	lb/mile	lb/mile	lb/mile	

Two Acre Site Example - Demolition Phase

Construction Worker Number of Trips and Trip Lengt	h	
Vehicle	No. of One-Way	One Way Trip Length ^j
	Trips/Day ⁱ	(miles)
Haul Truck	5	0.1

Incremental Increase in Onsite Combustion Emissions from Construction Equipment								
Equation: Emission Factor (lb/hr) x No. of Equipment x Work Day (hr/day) = Onsite Construction Emissions (lb/day)								
	CO	NOx	PM10					
Equipment Type	lb/day	lb/day	lb/day					
Skid Steer Loaders	1.22	1.72	0.15					
Rubber Tired Dozers	6.14	16.90	0.67					
Rubber Tired Loaders	2.55	6.67	0.38					
Total	9.9	25.3	1.2					

Incremental Increase in Onsite Fugitive Dust Emissions from Construction Equipment				
Material Handling ^k : (0.0032 x Aerodynamic Particle Size Multiplier x (wind speed (mph)/5) ^{1.3} /(moisture content/2) ^{1.4} x debris handled (ton/day)) x				
(1 - control efficiency) = PM10 Emissions (lb/day)				

DescriptionControl Efficiency
%PM10 Mitigated
lb/dayMaterial Handling (Demolition)1680.06Material Handling (Debris)680.06Total0.12

Incremental Increase in Onsite Combustion Emissions from Onroad Mobile Vehicles						
Equation: Emission Factor (lb/mile) x No. of One-Way Trips/Day x 2 x Trip length (mile) = Mobile Emissions (lb/day)						
	CO	NOx	PM10			
Vehicle	lb/day	lb/day	lb/day			
Haul Truck	0.03	0.03	0.001			
Total	0.03	0.03	0.001			

Two Acre Site Example - Demolition Phase

Total Incremental Localized Emissions from Construction Activities							
	CO	NOx	PM10				
Sources	lb/day	lb/day	lb/day				
On-site Emissions (Mitigated)	9.9	25.3	1.3				
Significance Threshold ⁿ	658	208	6				
Exceed Significance?	NO	NO	NO				

Notes:

Project specific data may be entered into shaded cells. Changing the values in the shaded cells will not affect the integrity of the worksheets. Verify that units of values entered match units

for cell. Adding lines or entering values with units different than those associated with the shaded cells may alter the integrity of the sheets or produce incorrect results.

- a) SCAQMD, estimated from survey data, Sept 2004
- b) Equipment name must match CARB Off-Road Model (see Off-Road Model EF worksheet) equipment name for sheet to look up EFs automatically.
- c) SCAB values provided by the ARB, Aug 2004. Assumed equipment is diesel fueled.
- d) USEPA, AP-42, Jan 1995, Section 13.2.4 Aggretate Handling and Storage Piles, p 13.2.4-3 Aerodynamic particle size multiplier for < 10 μm
- e) Mean wind speed maximum of daily average wind speeds reported in 1981 meteorological data.
- f) USEPA, Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, equation 2-13, p 2-28
- g) USEPA, Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, p 2-28. Debris weight to area ratio = 0.046 ton/sq ft (33,055 sq ft x 0.046 ton/sq ft)/22 days = 69 ton/day
- h) CARB, EMFAC2002 (version 2.2) Burden Model, Winter 2005, 75 F, 40% RH: EF, lb/yr = (EF, ton/yr x 2,000 lb/ton)/VMT
- i) Assumed 20 cubic yd truck capacity [(69.115 ton/day x 2,000 lb/ton x cyd/1,620 lb = 85 cyd)/20 cyd/truck = 5 one-way truck trips/day, building debris density is assumed to be 1,620 lb/cyd] Multiple trucks can be used.
- j) Assumed trucks travel 0.1 mile through project site.
- k) USEPA, Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, equation 2-13, p 2-28. EPA suggusts using the material handling equation for demolition emission estimates.
- l) EPA suggusts using the material handling equation for demolition emission estimates.
- m) Includes watering at least three times a day per Rule 403 (68% control efficiency)
- n) Illustration purpose showing the most stringent LSTs. Please consult App. C of the Methodology Paper for applicable LSTs.

Two Acre Site Example - Site Preparation Phase

Example		Construction Activity		_	
Two Acre Site		Site Preparation (2007)	87,12	Square Feet ^a	
Site Preparation Schedule -		5 days ^a			
Equipment Type ^{a,b}	No. of Equipment	hr/day	Crew Size		
Rubber Tired Loaders	1	6.0	5		
Graders	0	8.0	•		
Tractors/Loaders/Backhoes	2	6.0			
Construction Equipment Emission Factor	ors				
	CO	NOx	PM10		
Equipment Type ^c	lb/hr	lb/hr	lb/hr		
Rubber Tired Loaders	0.425	1.111	0.063		
Graders	0.546	1.442	0.074		
Tractors/Loaders/Backhoes	0.419	0.816	0.083		
Fugitive Dust Clearing Parameters					
Silt Content ^d	Moisture Content ^d				
6.9	7.9				
Fugitive Dust Stockpiling Parameters					
Silt Content ^d 6.9	Precipitation Days ^e	Mean Wind Speed Percent ^f 100	TSP Fraction 0.5	Area (acres) ^g 0.06	
Fugitive Dust Material Handling					
Aerodynamic Particle Size Multiplier ^h	Mean Wind Speedⁱ mph	Moisture Content ^d	Dirt Handled^a cy	Debris Handled ^a cy	Dirt Handled^j lb/day
0.35	10	7.9	2,000	48	1,000,000

Two Acre Site Example - Site Preparation Phase

Construction Vehicle (Mobile Source	e) Emission Factors			
	CO	NOx	PM10	
	lb/mile	lb/mile	lb/mile	
Heavy-Duty Truck ¹	0.026167	0.034155	0.000626	

Construction Worker Number of Trip	os and Trip Length	
Vehicle	No. of One-Way Trips/Day	One WayTrip Length (miles)
Haul Truck ^k	21	0.1
Water Truck ^m	3	2.8

Incremental Increase in Onsite Combu	stion Emissions from Constru	ction Equipment		
Equation: Emission Factor (lb/hr) x No	o. of Equipment x Work Day (h	r/day) = Onsite Construction	Emissions (lb/day	
	CO	NOx	PM10	
Equipment Type	lb/day	lb/day	lb/day	
Rubber Tired Loaders	2.55	6.67	0.38	
Graders	0.00	0.00	0.00	
Tractors/Loaders/Backhoes	5.03	9.79	1.00	
Fotal	7.6	16.5	1.4	

Incremental Increase in Fugitive Dust Emissions from Construction Operations

Equations:

Clearingⁿ: PM10 Emissions (lb/day) = 0.75 x (silt content^{1.5})/(moisture content^{1.4}) x hours operated (hr/day) x (1 - control efficiency)

Storage Piles°: PM10 Emissions (lb/day) = 1.7 x (silt content/1.5) x ((365-precipitation days)/235) x wind speed percent/15 x TSP fraction x Area) x (1 - control efficiency)

Material Handling^p PM10 Emissions (lb/day) = (0.0032 x aerodynamic particle size multiplier x (wind speed (mph)/5)^{1.3}/(moisture content/2)^{1.4} x dirt handled (lb/day)/2,000 (lb/ton) (1 - control efficiency)

	Control Efficiency	$PM10^{q}$	
Description	9/0	lb/day	
Clearing	68	1.45	
Storage Piles	68	0.76	
Material Handling	68	0.06	
Total		2.27	

Two Acre Site Example - Site Preparation Phase

Incremental Increase in Onsite Combustion Emissions from Onroad Mobile Vehicles

Equation: Emission Factor (lb/mile) x No. of One-Way Trips/Day x 2 x Trip length (mile) = Mobile Emissions (lb/day

	CO	NOx	PM10
Vehicle	lb/day	lb/day	lb/day
Haul Truck	0.11	0.14	0.00
Water Truck	0.44	0.57	0.011
Total	0.55	0.71	0.01

Total Incremental Localized Emission	missions from Construction Activities			
	CO	NOx	PM10	
Sources	lb/day	lb/day	lb/day	
On-site Emissions	8.1	17.2	3.7	
Significance Threshold ^r	658	208	6	
Exceed Significance?	NO	NO	NO	

Notes:

Project specific data may be entered into shaded cells. Changing the values in the shaded cells will not affect the integrity of the worksheets. Verify that units of values entered match units

for cell. Adding lines or entering values with units different than those associated with the shaded cells may alter the integrity of the sheets or produce incorrect results.

- a) SCAOMD, estimated from survey data, Sept 2004
- b) Equipment name must match CARB Off-Road Model (see Off-Road Model EF worksheet) equipment name for sheet to look up EFs automatically.
- c) SCAB values provided by the ARB, Aug 2004. Assumed equipment is diesel fueled.
- d) USEPA, AP-42, July 1998, Table 11.9-3 Typical Values for Corection Factors Applicable to the Predictive Emission Factor Equations
- e) Table A9-9-E2, SCAQMD CEQA Air Quality Handbook, 1993
- f) Mean wind speed percent percent of time mean wind speed exceeds 12 mph.
- g) Assumed storage piles are 0.06 acres in size
- h) USEPA, AP-42, Jan 1995, Section 13.2.4 Aggretate Handling and Storage Piles, p 13.2.4-3 Aerodynamic particle size multiplier for < 10 μm
- i) Mean wind speed maximum of daily average wind speeds reported in 1981 meteorological data.
- i) Assuming 2000 cubic yards of dirt handled [(2000 cyd x 2,500 lb/cyd)/5 days = 1,000,000 lb/day]
- k) CARB, EMFAC2002 (version 2.2) Burden Model, Winter 2005, 75 F, 40% RH: EF, lb/yr = (EF, ton/yr x 2,000 lb/ton)/VMT
- 1) Assumed 20 cubic yd truck capacity for 2000 cyd of dirt and 48 cyd of debris [(2048 cy x truck/20 cy)/5 days = 21 one-way truck trips/day]
- m) Assumed six foot wide water truck traverses over 87,120 square feet of disturbed area
- n) USEPA, AP-42, July 1998, Table 11.9-1, Equation for bulldozer, overburden, ≤ 10 μm
- o) USEPA, Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, Sept 1992, EPA-450/2-92-004, Equation 2-12
- p) USEPA, AP-42, Jan 1995, Section 13.2.4 Aggretate Handling and Storage Piles, Equation 1
- q) Includes watering at least three times a day per Rule 403 (68% control efficiency).
- r) Illustration purpose showing the most stringent LSTs. Please consult App. C of the Methodology Paper for applicable LSTs.

Example		Construction Activity			
Two Acre Site		Grading & Excavation (2007)	87,12	O Square Feet ^a	
Site Preparation Schedule -	237	days ^a			
Equipment Type ^{a,b}	No. of Equipment	hr/day	Crew Size		
Rubber Tired Loaders	1	6.0	5		
Graders	1	6.0			
Excavators	1	6.0			
Construction Equipment Emission Factor	rs				
	CO	NOx	PM10		
Equipment Type ^c	lb/hr	lb/hr	lb/hr		
Rubber Tired Loaders	0.425	1.111	0.063		
Graders	0.546	1.442	0.074		
Excavators	0.472	1.138	0.060		
Fugitive Dust Grading Parameters					
Vehicle Speed (mph) ^d	Vehicle Miles Traveled ^e				
3	0.01				
Fugitive Dust Stockpiling Parameters					
Silt Content ^f	Precipitation Days ^g	Mean Wind Speed Percent ^h	TSP Fraction	Area (acres) ⁱ	
6.9	10	100	0.5	0.06	
Fugitive Dust Material Handling					
Aerodynamic Particle Size Multiplier ^j	Mean Wind Speed^k mph	Moisture Content ^f	Dirt Handled ^a	Dirt Handled^l lb/day	
0.35	10	7.9	51,000	537,975	

Construction Vehicle (Mobile Source) E	Construction Vehicle (Mobile Source) Emission Factors		
	co	NOx	PM10
	lb/mile	lb/mile	lb/mile
Heavy-Duty Truck ^m	0.026167	0.034155	0.000626

Construction Worker Number of Trip	os and Trip Length	
Vehicle	No. of One-Way Trips/Day	One WayTrip Length (miles)
aul Truck ⁿ	638	0.1
Water Truck ^o	3	2.8

Incremental Increase in Onsite Comb	bustion Emissions from Construc	ction Equipmen		
Equation: Emission Factor (lb/hr) x	No. of Equipment x Work Day (hr	/day) = Onsite Construction F	missions (lb/day)	
	CO	NOx	PM10	
Equipment Type	lb/day	lb/day	lb/day	
Rubber Tired Loaders	2.55	6.67	0.38	
Graders	3.28	8.65	0.44	
Excavators	2.83	6.83	0.36	
Total	8.7	22.1	1.18	

Incremental Increase in Fugitive Dust Emissions from Construction Operation

Equations:

Grading^p: PM10 Emissions (lb/day) = $0.60 \times 0.051 \times \text{mean vehicle speed}^{2.0} \times \text{VMT} \times (1 - \text{control efficiency})$

Storage Piles^q: PM10 Emissions (lb/day) = 1.7 x (silt content/1.5) x ((365-precipitation days)/235) x wind speed percent/15 x TSP fraction x Area) x (1 - control efficiency)

Material Handling^r PM10 Emissions (lb/day) = $(0.0032 \text{ x aerodynamic particle size multiplier x (wind speed (mph)/5)}^{1.3}$ /(moisture content/2)^{1.4} x dirt handled (lb/day)/2,000 (lb/ton) (1 - control efficiency)

	Control Efficiency	$PM10^{s}$
Description	<u>%</u>	lb/day
Earthmoving	68	0.00
Storage Piles	68	0.76
Material Handling	68	0.03
Total		0.79

Incremental Increase in Onsite Combustion Emissions from Onroad Mobile Vehicle

Equation: Emission Factor (lb/mile) x No. of One-Way Trips/Day x 2 x Trip length (mile) = Mobile Emissions (lb/day)

	CO	NOx	PM10
Vehicle	lb/day	lb/day	lb/day
Haul Truck	3.34	4.36	0.08
Water Truck	0.44	0.57	0.011
Total	3.78	4.93	0.09

Total Incremental Localized Emission				
	CO	NOx	PM10	
Sources	lb/day	lb/day	lb/day	
On-site Emissions	12.4	27.1	2.1	
Significance Threshold ^t	658	208	6	
Exceed Significance?	NO	NO	NO	

Notes:

Project specific data may be entered into shaded cells. Changing the values in the shaded cells will not affect the integrity of the worksheets. Verify that units of values entered match units for cell. Adding lines or entering values with units different than those associated with the shaded cells may alter the integrity of the sheets or produce incorrect results.

- a) SCAQMD, estimated from survey data, Sept 2004
- b) Equipment name must match CARB Off-Road Model (see Off-Road Model EF worksheet) equipment name for sheet to look up EFs automatically.
- c) SCAB values provided by the ARB, Aug 2004. Assumed equipment is diesel fueled.
- d) Caterpillar Performance Handbook, Edition 33, October 2003 Operating Speeds, p 2-3.
- e) Assumed 13 foot wide blade with 2 foot overlap (11 foot wide). Vehicle miles traveled (VMT) = (87,120 sq ft/11 foot x mile/5,280 ft)/237 days = 0.01 miles
- f) USEPA, AP-42, Jan 1995, Table 11.9-3 Typical Values for Corection Factors Applicable to the Predictive Emission Factor Equations
- g) Table A9-9-E2, SCAQMD CEQA Air Quality Handbook, 1993
- h) Mean wind speed percent percent of time mean wind speed exceeds 12 mph. At least one meteorological site recorded wind speeds greater than 12 mph over a 24-hour period in 1981.
- i) Assumed storage piles are 0.06 acres in size
- i) USEPA, AP-42, Jan 1995, Section 13.2.4 Aggretate Handling and Storage Piles, p 13.2.4-3 Aerodynamic particle size multiplier for < 10 μm
- k) Mean wind speed maximum of daily average wind speeds reported in 1981 meteorological data.
- l) Assuming 51000 cubic yards of dirt handled [(51000 cyd x 2,500 lb/cyd)/237 days = 537,975 lb/day]
- m) CARB, EMFAC2002 (version 2.2) Burden Model, Winter 2005, 75 F, 40% RH: EF, lb/yr = (EF, ton/yr x 2,000 lb/ton)/VMT
- n) Assumed 20 cubic vd truck capacity for 51000 cyd of dirt [(51000 cyd x truck/20 cyd)/237 days = 638 one-way truck trips/day]. Multiple trucks may be used.
- o) Assumed six foot wide water truck traverses over 87,120 square feet of disturbed area
- p) USEPA, AP-42, Jan 1995, Table 11.9-1, Equation for Site Grading ≤ 10 μm
- q) USEPA, Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, Sept 1992, EPA-450/2-92-004, Equation 2-12
- r) USEPA, AP-42, Jan 1995, Section 13.2.4 Aggretate Handling and Storage Piles, Equation 1
- s) Includes watering at least three times a day per Rule 403 (68% control efficiency).
- t) Illustration purpose showing the most stringent LSTs. Please consult App. C of the Methodology Paper for applicable LSTs.

Example		Construction Activity			
Two Acre Site	Grading & Excavation 2008			87,120 Square Feet ^a	
Site Preparation Schedule -	66	days ^a			
Equipment Type ^{a,b}	No. of Equipment	hr/day	Crew Size		
Rubber Tired Loaders	1	6.0	5		
Graders	1	6.0			
Excavators	1	6.0			
Construction Equipment Emission Factor	rs				
	CO	NOx	PM10		
Equipment Type ^c	lb/hr	lb/hr	lb/hr		
Rubber Tired Loaders	0.421	1.022	0.059		
Graders	0.540	1.331	0.069		
Excavators	0.469	1.029	0.055		
Fugitive Dust Grading Parameters					
Vehicle Speed (mph) ^d	Vehicle Miles Traveled ^e				
3	0.02				
Fugitive Dust Stockpiling Parameters					
Silt Content ^f	Precipitation Days ^g	Mean Wind Speed Percent ^h	TSP Fraction	Area (acres) ⁱ	
6.9	10	100	0.5	0.06	
Fugitive Dust Material Handling					
Aerodynamic Particle Size Multiplier ^j	Mean Wind Speed^k mph	Moisture Content ^f	Dirt Handled ^a	Dirt Handled^l lb/day	
0.35	10	7.9	51,000	1,931,818	

Construction Vehicle (Mobile Source	onstruction Vehicle (Mobile Source) Emission Factors					
	CO	NOx	PM10			
	lb/mile	lb/mile	lb/mile			
Heavy-Duty Truck ^m	0.026167	0.034155	0.000626			

Construction Worker Number of Trips and Trip Length			
Vehicle	No. of One-Way Trips/Day	One WayTrip Length (miles)	
Haul Truck ⁿ	638	0.1	
Water Truck ^o	3	2.8	

Incremental Increase in Onsite Combustion Emissions from Construction Equipmen Equation: Emission Factor (lb/hr) x No. of Equipment x Work Day (hr/day) = Onsite Construction Emissions (lb/day)							
Equipment Type	lb/day	lb/day	lb/day				
Rubber Tired Loaders	2.53	6.13	0.35				
Graders	3.24	7.99	0.41				
Excavators	2.81	6.17	0.33				
Total	8.6	20.3	1.10				

Incremental Increase in Fugitive Dust Emissions from Construction Operation

Equations:

Grading^p: PM10 Emissions (lb/day) = $0.60 \times 0.051 \times \text{mean vehicle speed}^{2.0} \times \text{VMT} \times (1 - \text{control efficiency})$

Storage Piles^q: PM10 Emissions (lb/day) = 1.7 x (silt content/1.5) x ((365-precipitation days)/235) x wind speed percent/15 x TSP fraction x Area) x (1 - control efficiency)

Material Handling^r PM10 Emissions (lb/day) = $(0.0032 \text{ x aerodynamic particle size multiplier x (wind speed (mph)/5)}^{1.3}$ /(moisture content/2)^{1.4} x dirt handled (lb/day)/2,000 (lb/ton) (1 - control efficiency)

	Control Efficiency	PM10 ^s
Description	%	lb/day
Earthmoving	68	0.00
Storage Piles	68	0.76
Material Handling	68	0.12
Total		0.88

Incremental Increase in Onsite Combustion Emissions from Onroad Mobile Vehicle

Equation: Emission Factor (lb/mile) x No. of One-Way Trips/Day x 2 x Trip length (mile) = Mobile Emissions (lb/day)

	CO	NOx	PM10
Vehicle	lb/day	lb/day	lb/day
Haul Truck	3.34	4.36	0.08
Water Truck	0.44	0.57	0.011
Total	3.78	4.93	0.09

Total Incremental Localized Emission				
	CO	NOx	PM10	
Sources	lb/day	lb/day	lb/day	
On-site Emissions	12.4	25.2	2.1	
Significance Threshold ^t	658	208	6	
Exceed Significance?	NO	NO	NO	

Notes:

Project specific data may be entered into shaded cells. Changing the values in the shaded cells will not affect the integrity of the worksheets. Verify that units of values entered match units for cell. Adding lines or entering values with units different than those associated with the shaded cells may alter the integrity of the sheets or produce incorrect results.

- a) SCAQMD, estimated from survey data, Sept 2004
- b) Equipment name must match CARB Off-Road Model (see Off-Road Model EF worksheet) equipment name for sheet to look up EFs automatically.
- c) SCAB values provided by the ARB, Aug 2004. Assumed equipment is diesel fueled.
- d) Caterpillar Performance Handbook, Edition 33, October 2003 Operating Speeds, p 2-3.
- e) Assumed 13 foot wide blade with 2 foot overlap (11 foot wide). Vehicle miles traveled (VMT) = (87,120 sq ft/11 foot x mile/5,280 ft)/66 days = 0.02miles
- f) USEPA, AP-42, Jan 1995, Table 11.9-3 Typical Values for Corection Factors Applicable to the Predictive Emission Factor Equations
- g) Table A9-9-E2, SCAQMD CEQA Air Quality Handbook, 1993
- h) Mean wind speed percent percent of time mean wind speed exceeds 12 mph. At least one meteorological site recorded wind speeds greater than 12 mph over a 24-hour period in 1981.
- i) Assumed storage piles are 0.06 acres in size
- i) USEPA, AP-42, Jan 1995, Section 13.2.4 Aggretate Handling and Storage Piles, p 13.2.4-3 Aerodynamic particle size multiplier for < 10 μm
- k) Mean wind speed maximum of daily average wind speeds reported in 1981 meteorological data.
- l) Assuming 51000 cubic yards of dirt handled [(51000 cyd x 2,500 lb/cyd)/66 days = 1,931,818 lb/day]
- m) CARB, EMFAC2002 (version 2.2) Burden Model, Winter 2005, 75 F, 40% RH: EF, lb/yr = (EF, ton/yr x 2,000 lb/ton)/VMT
- n) Assumed 20 cubic yd truck capacity for 51000 cyd of dirt [(51000 cyd x truck/20 cyd)/66 days = 638 one-way truck trips/day]. Multiple trucks may be used.
- o) Assumed six foot wide water truck traverses over 87,120 square feet of disturbed area
- p) USEPA, AP-42, Jan 1995, Table 11.9-1, Equation for Site Grading ≤ 10 μm
- q) USEPA, Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, Sept 1992, EPA-450/2-92-004, Equation 2-12
- r) USEPA, AP-42, Jan 1995, Section 13.2.4 Aggretate Handling and Storage Piles, Equation 1
- s) Includes watering at least three times a day per Rule 403 (68% control efficiency).
- t) Illustration purpose showing the most stringent LSTs. Please consult App. C of the Methodology Paper for applicable LSTs.

Example	Construction Activity	
Two Acre Site	Building (2008)	38,205 Square Foot Structure ^a
Construction Schedule		

Equipment Type ^{a,b}	No. of Equipment	hr/day	Crew Size
Rough Terrain Forklifts	2	6.0	8
Skid Steer Loaders	1	6.0	
Tractors/Loaders/Backhoes	1	6.0	
Generator Sets	0	8.0	
Electric Welders	0	8.0	

Construction Equipment Combustion Emission Factors					
	CO	NOx	PM10		
Equipment Type ^c	lb/hr	lb/hr	lb/hr		
Rough Terrain Forklifts	0.442	0.754	0.067		
Skid Steer Loaders	0.194	0.270	0.022		
Tractors/Loaders/Backhoes	0.420	0.799	0.083		
Generator Sets	0.315	0.635	0.047		
Electric Welders	N/A	N/A	N/A		

Construction Vehicle (Mobile Source) Emission Factors				
	CO	NOx	PM10	
	lb/mile	lb/mile	lb/mile	
Heavy-Duty Truck ^d	0.026167	0.034155	0.000626	

Construction Worker Number of Trips and Trip Length		
Vehicle	No. of One-Way Trips/Day	One WayTrip Length (miles)
Flatbed Truck ^{a,e}	30	0.1
Water Truck ^f	3	3.2

Incremental Increase in Onsite Combustion Emissions from Construction Equipment

Equation: Emission Factor (lb/hr) x No. of Equipment x Work Day (hr/day) = Onsite Construction Emissions (lb/day)

	CO	NOx	PM10
Equipment Type	lb/day	lb/day	lb/day
Rough Terrain Forklifts	5.30	9.05	0.80
Skid Steer Loaders	1.16	1.62	0.13
Tractors/Loaders/Backhoes	2.52	4.79	0.50
Generator Sets	0.00	0.00	0.00
Electric Welders	N/A	N/A	N/A
Total	8.98	15.46	1.43

Incremental Increase in Onsite Combustion Emissions from Onroad Mobile Vehicles

Equation: Emission Factor (lb/mile) x No. of One-Way Trips/Day x 2 x Trip length (mile) = Mobile Emissions (lb/day)

	CO	NOx	PM10
Vehicle	lb/day	lb/day	lb/day
Flatbed Truck	0.16	0.20	0.004
Water Truck	0.5	0.66	0.012
Total	0.66	0.86	0.02

Total Incremental Combustion Emissions from Construction Activities				
	CO	NOx	PM10	
Sources	lb/day	lb/day	lb/day	
On-Site Emissions	9.6	16.3	1.4	
Significance Threshold ^g	658	208	6	
Exceed Significance?	NO	NO	NO	

Notes:

Project specific data may be entered into shaded cells. Changing the values in the shaded cells will not affect the integrity of the worksheets. Verify that units of values entered match units for cell. Adding lines or entering values with units different than those associated with the shaded cells may alter the integrity of the sheets or produce incorrect results.

- a) SCAQMD, estimated from survey data, Sept 2004
- b) Equipment name must match CARB Off-Road Model (see Off-Road Model EF worksheet) equipment name for sheet to look up EFs automatically.
- c) SCAB values provided by the ARB, Aug 2004. Assumed equipment is diesel fueled except the welders which are powered by the generator.
- d) CARB, EMFAC2002 (version 2.2) Burden Model, Winter 2005, 75 F, 40% RH: EF, lb/yr = (EF, ton/yr x 2,000 lb/ton)/VMT
- e) Assumed haul truck travels 0.1 miles through facility
- f) Assumed six foot wide water truck traverses over 100,000 square feet of disturbed area
- g) Illustration purpose showing the most stringent LSTs. Please consult App. C of the Methodology Paper for applicable LSTs.

Construction Activity	
Building (2009)	38,205 Square Foot Structure ^a
	·

Equipment Type ^{a,b}	No. of Equipment	hr/day	Crew Size
Rough Terrain Forklifts	2	6.0	8
Skid Steer Loaders	1	6.0	
Tractors/Loaders/Backhoes	1	6.0	
Generator Sets	0	8.0	
Electric Welders	0	8.0	

Construction Equipment Combustion Emission Factors				
	CO	NOx	PM10	
Equipment Type ^c	lb/hr	lb/hr	lb/hr	
Rough Terrain Forklifts	0.437	0.691	0.061	
Skid Steer Loaders	0.186	0.252	0.019	
Tractors/Loaders/Backhoes	0.419	0.777	0.082	
Generator Sets	0.307	0.614	0.046	
Electric Welders	N/A	N/A	N/A	

Construction Vehicle (Mobile Source) Emission Factors				
	CO	NOx	PM10	
	lb/mile	lb/mile	lb/mile	
Heavy-Duty Truck ^d	0.026167	0.034155	0.000626	

Construction Worker Number of Trips and Trip Length		
Vehicle	No. of One-Way Trips/Day	One WayTrip Length (miles)
Flatbed Truck ^{a,e}	30	0.1
Water Truck ^f	3	3.2

Incremental Increase in Onsite Combustion Emissions from Construction Equipment

Equation: Emission Factor (lb/hr) x No. of Equipment x Work Day (hr/day) = Onsite Construction Emissions (lb/day)

	CO	NOx	PM10
Equipment Type	lb/day	lb/day	lb/day
Rough Terrain Forklifts	5.24	8.29	0.73
Skid Steer Loaders	1.12	1.51	0.11
Tractors/Loaders/Backhoes	2.51	4.66	0.49
Generator Sets	0.00	0.00	0.00
Electric Welders	N/A	N/A	N/A
Total	8.87	14.46	1.33

Incremental Increase in Onsite Combustion Emissions from Onroad Mobile Vehicles

Equation: Emission Factor (lb/mile) x No. of One-Way Trips/Day x 2 x Trip length (mile) = Mobile Emissions (lb/day)

	CO	NOx	PM10
Vehicle	lb/day	lb/day	lb/day
Flatbed Truck	0.16	0.20	0.004
Water Truck	0.5	0.66	0.012
Total	0.66	0.86	0.02

Total Incremental Combustion Emissions from Construction Activities							
	CO	NOx	PM10				
Sources	lb/day	lb/day	lb/day				
On-Site Emissions	9.5	15.3	1.3				
Significance Threshold ^g	658	208	6				
Exceed Significance?	NO	NO	NO				

Notes:

Project specific data may be entered into shaded cells. Changing the values in the shaded cells will not affect the integrity of the worksheets. Verify that units of values entered match units for cell. Adding lines or entering values with units different than those associated with the shaded cells may alter the integrity of the sheets or produce incorrect results.

- a) SCAQMD, estimated from survey data, Sept 2004
- b) Equipment name must match CARB Off-Road Model (see Off-Road Model EF worksheet) equipment name for sheet to look up EFs automatically.
- c) SCAB values provided by the ARB, Aug 2004. Assumed equipment is diesel fueled except the welders which are powered by the generator.
- d) CARB, EMFAC2002 (version 2.2) Burden Model, Winter 2005, 75 F, 40% RH: EF, lb/yr = (EF, ton/yr x 2,000 lb/ton)/VMT
- e) Assumed haul truck travels 0.1 miles through facility
- f) Assumed six foot wide water truck traverses over 100,000 square feet of disturbed area
- g) Illustration purpose showing the most stringent LSTs. Please consult App. C of the Methodology Paper for applicable LSTs.

Two Acre Site Example - Architectural Coating and Asphalt Paving

Example	Construction Activity
Two Acre Site	Architectural Coating and Asphalt Paving of Parking Lot
Construction Schedule -	22 days ^a

Equipment Type ^{a,b}	No. of Equipment	hr/day	Crew Size
Pavers	1	6.0	8
Paving Equipment	1	6.0	
Rollers	0	7.0	
Cement and Mortar Mixers	0	6.0	
Tractors/Loaders/Backhoes	0	8.0	

Construction Equipment Combustion Emission Factors								
	CO	NOx	PM10					
Equipment Type ^c	lb/hr	lb/hr	lb/hr					
Pavers	0.423	0.685	0.049					
Paving Equipment	0.406	0.856	0.064					
Rollers	0.356	0.593	0.042					
Cement and Mortar Mixers	0.045	0.068	0.005					
Tractors/Loaders/Backhoes	0.419	0.777	0.082					

Construction Vehicle (Mobile Source) Emission Factors							
	CO	NOx	PM10				
	lb/mile	lb/mile	lb/mile				
Heavy-Duty Truck ^d	0.026167	0.034155	0.000626				

Construction Worker Number of Trips and Trip Length						
Vehicle	No. of One-Way Trips/Day	One WayTrip Length (miles)				
Delivery Truck ^e	3	0.1				
Water Truck ^f	3	3.2				

Two Acre Site Example - Architectural Coating and Asphalt Paving

Incremental Increase in Onsite Combustion Emissions from Construction Equipment

Equation: Emission Factor (lb/hr) x No. of Equipment x Work Day (hr/day) = Onsite Construction Emissions (lb/day)

	CO	NOx	PM10
Equipment Type	lb/day	lb/day	lb/day
Pavers	2.54	4.11	0.29
Paving Equipment	2.44	5.14	0.38
Rollers	0.00	0.00	0.00
Cement and Mortar Mixers	0.00	0.00	0.00
Tractors/Loaders/Backhoes	0.00	0.00	0.00
Total	4.98	9.25	0.67

Incremental Increase in Onsite Combustion Emissions from Onroad Mobile Vehicles

Equation: Emission Factor (lb/mile) x No. of One-Way Trips/Day x 2 x Trip length (mile) = Mobile Emissions (lb/day)

	CO	NOx	PM10
Vehicle	lb/day	lb/day	lb/day
Delivery Truck	0.02	0.02	0.0004
Water Truck	0.50	0.66	0.01
Total	0.52	0.68	0.01

Total Incremental Combustion Emissions from Construction Activities							
	CO	NOx	PM10				
Sources	lb/day	lb/day	lb/day				
On-Site Emissions	5.5	9.9	0.7				
Significance Threshold ^g	658	208	6				
Exceed Significance?	NO	NO	NO				

Two Acre Site Example - Architectural Coating and Asphalt Paving

Notes:

Project specific data may be entered into shaded cells. Changing the values in the shaded cells will not affect the integrity of the worksheets. Verify that units of values entered match units for cell. Adding lines or entering values with units different than those associated with the shaded cells may alter the integrity of the sheets or produce incorrect results.

- a) SCAQMD, estimated from survey data, Sept 2004
- b) Equipment name must match CARB Off-Road Model (see Off-Road Model EF worksheet) equipment name for sheet to look up EFs automatically.
- c) SCAB values provided by the ARB, Aug 2004. Assumed equipment is diesel fueled.
- d) CARB, EMFAC2002 (version 2.2) Burden Model, Winter 2005, 75 F, 40% RH: EF, lb/yr = (EF, ton/yr x 2,000 lb/ton)/VMT
- e) Assumed haul truck travels 0.1 miles through facility
- f) Assumed six foot wide water truck traverses over 100,000 square feet of disturbed area
- g) Illustration purpose showing the most stringent LSTs. Please consult App. C of the Methodology Paper for applicable LSTs.

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm):

SCAQMD Station 091

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

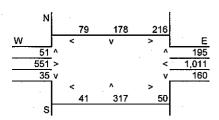
0.7 2005

Analysis Year: Roadway Data

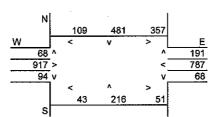
Intersection:

20th Street and Pico Boulevard

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


20th Street Pico Boulevard

No. of Average Speed Roadway Type A.M. Lanes At Grade 20 20 At Grade 20 20

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,036 2,183 E-W Road:

N-S Road: 1,422 E-W Road: 2,371

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A_2	A_3	A ₄	В	С				
-	Refe	erence CO	Concentra	tions ·	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road East-West Road	lour 3.3 11.9	2.6 7.0	2.2 5.4	1.7 3.8	1,036 2,183	6.93 6.93	0.24 1.80	0.19 1.06	0.16 0.82	0.12 0.58
P.M. Peak Traffic F North-South Road East-West Road	lour 3.3 11.9	2.6 7.0	2.2 5.4	1.7 3.8	1,422 2,371	6.93 6.93	0.33 1.96	0.26 1.15	0.22 0.89	0.17 0.62

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

· ·	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.0	5.3	3.7
25 Feet from Roadway Edge	4.2	4.4	3.1
50 Feet from Roadway Edge	4.0	. 4.1	2.9
100 Feet from Roadway Edge	3.7	3:8	2.7

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7

Analysis Year:

2005

Roadway Data

Intersection:

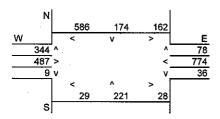
Cloverfield Boulevard and Pico Boulevard

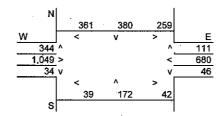
Analysis Condition:

Existing (2005) Traffic Conditions

North-South Roadway:

Cloverfield Boulevard Pico Boulevard


Roadway Type At Grade At Grade


No. of Average Speed A.M. P.M. Lanes 20 20 4 20 20

East-West Roadway:

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

1,565 2,229

N-S Road: 1,627 E-W Road: 2,507

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A_2	A_3	A_4	В	С				
	Refe	erence CO	Concentra	tions	Traffic	Emission	Esti	mated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road	lour 3.7	2.7	2.2	1.7	1,565	6.93	0.40	0.29	0.24	0.18
East-West Road	11.9	7.0	5.4	3.8	2,229	6.93	1.84	1.08	0.83	0.59
P.M. Peak Traffic F North-South Road		.2.7	2.2	1.7	1.627	6.93	0.42	0.30	0.25	0.19
East-West Road	11.9	7.0	5.4	3.8	2,507	6.93	2.07	1.22	0.25	0.19

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.2	5.5	3.8
25 Feet from Roadway Edge	4.4	4.5	3.2
50 Feet from Roadway Edge	4.1	4.2	2.9
100 Feet from Roadway Edge	3.8	3.9	2.7

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

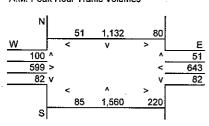
Persistence Factor:

0.7 2005

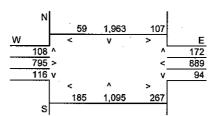
Roadway Data

Analysis Year:

Intersection: Analysis Condition: Bundy Drive and Pico Boulevard Existing (2005) Traffic Conditions


North-South Roadway:

East-West Roadway:


Bundy Drive Pico Boulevard

No. of Average Speed Roadway Type A.M. Lanes At Grade R 20 At Grade 20 5

A.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,161 E-W Road: 1,675

N-S Road: 3,720 E-W Road: 2,324

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A ₃	A_4	В	C .				
	Refe	erence CO	Concentra	tions	Traffic	Emission	Esti	mated CO	Concentrat	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road	our 9.5	6.1	4.9	3.5	3,161	6.93	2.08	1.34	1.07	0.77
East-West Road	3.3	2.6	2.2	1.7	1,675	6.93	0.38	0.30	0.26	0.20
P.M. Peak Traffic H										
North-South Road East-West Road	9.5 3.3	6.1 2.6	4.9 2.2	3.5 1.7	3,720 2,324	12.26 12.26	4.33 0.94	2.78 0.74	2.24 0.63	1.60 0.48

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration² 8-Hour Emissions = ((Highest Peak Hour Concentration - Background 1-hour Concentration) x Persistence Factor) + Background 8-hour Concentration²

	A.M.	P.M.			
	Peak Hour	Peak Hour	8-Ноиг		
Roadway Edge	5.5	8.3	5.8		
25 Feet from Roadway Edge	4.6	6.5	4.6		
50 Feet from Roadway Edge	4.3	5.9	4.1		
100 Feet from Roadway Edge	4.0	5.1	36		

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7

Analysis Year.

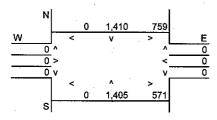
2005

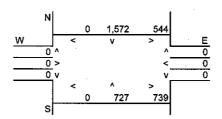
Roadway Data

Intersection:

Bundy Drive and I-10 Freeway EB On-Ramp

Analysis Condition:


Existing (2005) Traffic Conditions


North-South Roadway: East-West Roadway:

Bundy Drive I-10 Freeway EB On-Ramp Roadway Type Lanes At Grade At Grade 2

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

No. of

Average Speed

P.M.

20

20

A.M

10

10

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,574 E-W Road: 1,330

N-S Road: 3,038 E-W Road: 1,283

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A ₂	A_3	A ₄	В	С				
	Ref	Reference CO Concentrations			Traffic	Emission	Emission Estimated CO Concentratio			tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	3,574	9.74	4.14	2.44	1.88	1.32
East-West Road	3.7	2.7	2.2	1.7	1,330	9.74	0.48	0.35	0.28	0.22
P.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	3,038	6.93	2.51	1.47	1.14	0.80
East-West Road	3:7	2.7	2.2	1.7	1,283	6.93	0.33	0.24	0.20	0.15

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	7.6	5.8	5.3
25 Feet from Roadway Edge	5.8	4.7	4.0
50 Feet from Roadway Edge	5.2	4.3	3.6
100 Feet from Roadway Edge	4.5	4.0	3.2

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

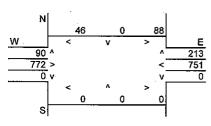
Background 1-hour CO Concentration (ppm):
Background 8-hour CO Concentration (ppm):
Persistence Factor:

3.0 2.1

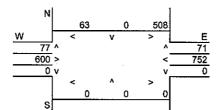
Persistence Factor: Analysis Year: 0.7 2005

Roadway Data

Intersection: Analysis Condition; 20th Street and Ocean Park Boulevard


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


20th Street Ocean Park Boulevard

	140. 01	Average Speed			
Roadway Type	Lanes	A.M.	P.M.		
At Grade	2	20	20		
At Grade	4	20	20		

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 437 E-W Road: 1,824 N-S Road: E-W Road:

719 1,931

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

. •	A ₁	A_2	A_3	A_4	В	С				
	Refe	erence CO	Concentra	tions	Traffic	Emission	Esti	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road East-West Road	lour 3.7 11.9	2.7 7.0	2.2 5.4	1.7 3.8	437 1,824	6.93 6.93	0.11 1.50	0.08 0.89	0.07 0.68	0.05 0.48
P.M. Peak Traffic H North-South Road	lou r 3.7	2.7	2,2	1.7	719	6.93	0.18	0.13	0.11	0.08
East-West Road	11.9	7.0	5.4	3.8	1,931	6.93	1.59	0.94	0.72	0.51

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M,	P.M.			
	Peak Hour	Peak Hour	8-Hour		
Roadway Edge	4.6	4.8	3.3		
25 Feet from Roadway Edge	4.0	4.1	2.9		
50 Feet from Roadway Edge	3.7	3.8	2.7		
100 Feet from Roadway Edge	3.5	3.6	2.5		

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7

Analysis Year:

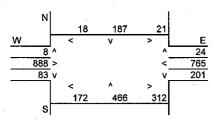
2005

Roadway Data

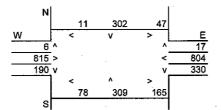
Intersection:

23rd Street and Ocean Park Boulevard

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


23rd Street Ocean Park Boulevard

No. of Average Speed Roadway Type A.M P.M. Lanes At Grade 20 20 20 At Grade 20

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,421 E-W Road: 2,211

N-S Road: 1,374 E-W Road: 2,178

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A_3	A_4	В	С					
	Reference CO Concentrations				Traffic	Emission	Est	imated CO	nated CO Concentrations		
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet	
A.M. Peak Traffic I	lour										
North-South Road	3.7	2.7	2.2	1.7	1,421	6.93	0.36	0.27	0.22	0.17	
East-West Road	11.9	7.0	5.4	3.8	2,211	6.93	1.82	1.07	0.83	0.58	
P.M. Peak Traffic H	lour				i	•					
North-South Road	3.7	2.7	2.2	1.7	1,374	6.93	0.35	0.26	0.21	0.16	
East-West Road	11.9	7.0	5.4	3.8	2,178	6.93	1.80	1.06	0.82	0.57	

Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration² 8-Hour Emissions = ((Highest Peak Hour Concentration - Background 1-hour Concentration) x Persistence Factor) + Background 8-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.2	5.1	3.6
25 Feet from Roadway Edge	4.3	4.3	3.0
50 Feet from Roadway Edge	4.0	4.0	2.8
100 Feet from Roadway Edge	3.7	3.7	2.6

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year:

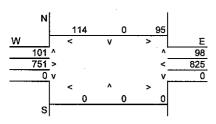
0.7 2005

Roadway Data

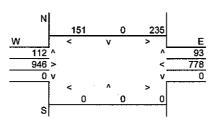
Intersection:

Cloverfield Boulevard and Ocean Park Boulevard

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Cloverfield Boulevard Ocean Park Boulevard

No. of Average Speed Roadway Type A.M. P.M. Lanes At Grade 2 20 20 At Grade 20 20

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 408 E-W Road: 1,791

N-S Road: 591 E-W Road: 2,052

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

•	A ₁	A_2	A_3	A_4	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	Estimated CO Concentrations		
Roadway	E.O.R.	25 Feét	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road	lour 3.7	2.7	2.2	1.7	408	6.93	0.10	0.08	0.06	0.05
East-West Road	11.9	7.0	5.4	3.8	1,791	6.93	1.48	0.87	0.67	0.47
P.M. Peak Traffic H North-South Road East-West Road	lour 3.7 11.9	2.7 7.0	2.2 5.4	1.7 3.8	591 2,052	6.93 6.93	0.15 1.69	0.11 1.00	0.09 0.77	0.07 0.54

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.W.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	4.6	4.8	3.4
25 Feet from Roadway Edge	3.9	4.1	2.9
50 Feet from Roadway Edge	3.7	3.9	2.7
100 Feet from Roadway Edge	3.5	3.6	2.5

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

SCAQMD Station 091

Background 8-hour CO Concentration (ppm):

3.0

Persistence Factor:

2.1 0.7

Analysis Year:

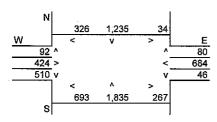
2005

Roadway Data

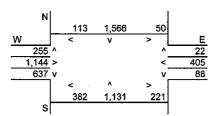
Intersection:

Bundy Drive and Ocean Park Boulevard

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Bundy Drive Ocean Park Boulevard

·	No. of	Average	e Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	4	5	5
At Grada	4	5	5

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 4,586 E-W Road: 2,729

N-S Road: 4,025 E-W Road: 2,936

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A ₃	A ₄	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E,O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic I	lour									
North-South Road	11.9	7.0	5.4	3.8	4,586	12.26	6.69	3.94	3.04	2.14
East-West Road	3.3	2.6	2.2	1.7	2,729	12.26	1.10	0.87	0.74	0.57
P.M. Peak Traffic I	lour								-	
North-South Road	11.9	7.0	5.4	3.8	4,025	12.26	5.87	3.46	2.67	1.88
East-West Road	3.3	2.6	2.2	1.7	2,936	12.26	1.19	0.94	0.79	0.61

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration² 8-Hour Emissions = ((Highest Peak Hour Concentration - Background 1-hour Concentration) x Persistence Factor) + Background 8-hour Concentration²

	A.M.	P.M.	
•	Peak Hour	Peak Hour	8-Hour
Roadway Edge	10.8	10.1	7.6
25 Feet from Roadway Edge	7.8	7.4	5.5
50 Feet from Roadway Edge	6.8	6.5	4.7
100 Feet from Roadway Edge	5.7	5.5	4.0

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7

Analysis Year:

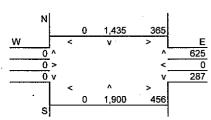
2005

Roadway Data

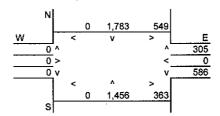
Intersection:

Bundy Drive and National Boulevard

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Bundy Drive National Boulevard

	NO. Of	Average	e Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	4	5	15
At Grade	4	5	15

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 4,325 E-W Road: 1,733

N-S Road: 4,188 E-W Road: 1,803

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A_2	A ₃	A_4	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Esti	Estimated CO Concentr		
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
	_									
A.M. Peak Traffic F	lour									
North-South Road	11.9	7.0	5.4	3.8	4,325	12.26	6.31	3.71	2.86	2.02
East-West Road	3.3	2.6	2.2	1.7	1,733	12.26	0.70	0.55	0.47	0.36
P.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	4,188	8.10	4.04	2.37	1.83	1.29
East-West Road	3.3	2.6	2.2	1.7	1,803	8.10	0.48	0.38	0.32	0.25

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	10.0	7.5	7.0
25 Feet from Roadway Edge	7.3	5.8	5.1
50 Feet from Roadway Edge	6.3	5.2	4.4
100 Feet from Roadway Edge	5.4	4.5	3.8

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm):

SCAQMD Station 091

Background 8-hour CO Concentration (ppm):

3.0

2.1

Persistence Factor: Analysis Year:

0.7 2005

Roadway Data

Intersection:

23rd Street/Walgrove Avenue and Airport Avenue

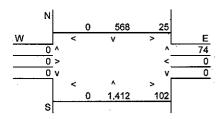
Analysis Condition:

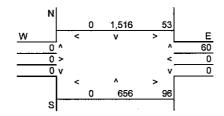
Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:

23rd Street/Walgrove Avenu-

Airport Avenue


Roadway Type At Grade At Grade


A.M. P.M. Lanes 10 20 5 5 2

Average Speed

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

No. of

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

2,082 201

N-S Road:

2,285 E-W Road: 209

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A_3	A ₄	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	lions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour									
North-South Road	14.0	7.6	5.7	4.0	2,082	9.74	2.84	1.54	1.16	0.81
East-West Road	3.7	2.7	2.2	1.7	201	12.26	0.09	0.07	0.05	0.04
P.M. Peak Traffic H	lour									
North-South Road	14.0	7,6	5.7	4.0	2,285	6.93	2.22	1.20	0.90	0.63
East-West Road	3.7	2.7	2.2	1.7	209	12.26	0.09	0.07	0.06	0.04

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration² 8-Hour Emissions = ((Highest Peak Hour Concentration - Background 1-hour Concentration) x Persistence Factor) + Background 8-hour Concentration²

	A.M.	P.M.	
•	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.9	5.3	4.2
25 Feet from Roadway Edge	4.6	4.3	3.2
50 Feet from Roadway Edge	4.2	4.0	2.9
100 Feet from Roadway Edge	3.9	3.7	2.7

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm): Persistence Factor:

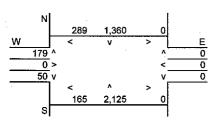
2.1

Analysis Year:

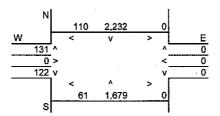
0.7 2005

Roadway Data

Intersection: Analysis Condition: **Bundy Drive and Airport Avenue** Existing (2005) Traffic Conditions


North-South Roadway: East-West Roadway:

Bundy Drive


Airport Avenue

No. of Average Speed Roadway Type A.M Lanes At Grade 20 15 At Grade 20 2 15

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,953 E-W Road:

N-S Road: 4,152 E-W Road:

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A ₂	A ₃	A ₄	В	С				
	Refe	erence CO	Concentra	tions	Traffic	Emission	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic F	lour									
North-South Road	11.9	7.0	5.4	3.8	3,953	6.93	3.26	1.92	1.48	1.04
East-West Road	3.7	2.7	2.2	1.7	683	6.93	0.18	0.13	0.10	0.08
P.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	4,152	8.10	4.00	2.35	1.82	1.28
East-West Road	3.7	2.7	2.2	1.7	424	8.10	0.13	0.09	0.08	0.06

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.		
	Peak Hour	Peak Hour	8-Hour	
Roadway Edge	6.4	7.1	5.0	
25 Feet from Roadway Edge	5.0	5.4	3.8	
50 Feet from Roadway Edge	4.6	4.9	3.4	
100 Feet from Roadway Edge	4.1	4.3	3.0	

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7 2005

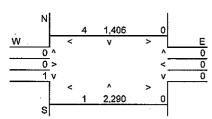
Roadway Data

Analysis Year:

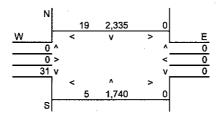
Intersection:

Bundy Drive and Project Driveway

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Bundy Drive Project Driveway

	No. of	Average	Average Speed,			
Roadway Type	Lanes	A,M,	P.M.			
At Grade	4	20	15			
At Grade	2	5	-			

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

3,700 6 N-S Road: E-W Road:

4,111 55

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A_2	A ₃	A_4	В	С					
	Refe	erence CO	Concentra	tions	Traffic	Emission	Esti	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet	
A.M. Peak Traffic F North-South Road East-West Road	lour 11.9 3.7	7.0 2.7	5.4 2.2	3.8 1.7	3,700 6	6.93 12.26	3.05 0.00	1.80 0.00	1.39 0.00	0.97 0.00	
P.M. Peak Traffic I North-South Road East-West Road	lour 11.9 3.7	7.0 2.7	5.4 2.2	3.8 1.7	4,111 55	8.10 12.26	3.96 0.02	2.33 0.02	1.80 0.01	1.27 0.01	

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
•	Peak Hour	Peak Hour	8-Hour
Roadway Edge	6.1	7.0	4.9
25 Feet from Roadway Edge	4.8	5.3	3.7
50 Feet from Roadway Edge	4.4	4.8	3.4
100 Feet from Roadway Edge	4.0	4.3	3.0

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): 3.0

Background 8-hour CO Concentration (ppm): 2

2.1

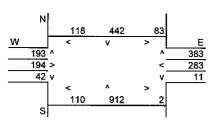
Persistence Factor:

0.7 2005

Roadway Data

Analysis Year:

Intersection: Analysis Condition: Walgrove Avenue and Rose Avenue


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Walgrove Avenue Rose Avenue

	NO. Of	Average	Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	2	5	5
At Grade	2	5	5

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 2,131 E-W Road: 956 N-S Road: 2,230 E-W Road: 1,076

Roadway CO Contributions and Concentrations

Emissions = (A x B x C) / 100,000¹

	A_1	A_2	Α ₃	A ₄	В	С				
	Refe	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour	•								
North-South Road	14.0	7.6	5.7	4.0	2,131	12.26	3.66	1.99	1.49	1.05
East-West Road	3.7	2.7	2.2	1.7	956	12.26	0.43	0,32	0.26	0.20
P.M. Peak Traffic H	lour									
North-South Road	14.0	7.6	5.7	4.0	2,230	12.26	3.83	2.08	1.56	1.09
East-West Road	3.7	2.7	2.2	1.7	1,076	12.26	0.49	0.36	0.29	0.22

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	7.1	7.3	5.1
25 Feet from Roadway Edge	5.3	5.4	3.8
50 Feet from Roadway Edge	4.7	4.8	3.4
100 Feet from Roadway Edge	4.2	4.3	3.0

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year: 0.7 2005

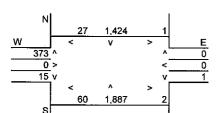
Roadway Data

Intersection:

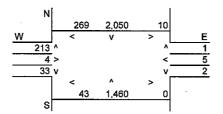
Centinela Avenue and Rose Avenue

Analysis Condition:

Existing (2005) Traffic Conditions


North-South Roadway: East-West Roadway:

Centinela Avenue Rose Avenue
 Roadway Type
 No. of Lanes
 Average Speed


 At Grade
 4
 20
 15

 At Grade
 2
 20
 15

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,712 E-W Road: 475 N-S Road: 4,003 E-W Road: 567

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A ₃	A_4	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road East-West Road	lour 11.9 3.7	7.0 2.7	5.4 2.2	3.8 1.7	3,712 475	6.93 6.93	3.06 0.12	1.80 0.09	1.39 0.07	0.98 0.06
P.M. Peak Traffic I North-South Road East-West Road	lour 11.9 3.7	7.0 2.7	5.4 2.2	3.8 1.7	4,003 567	8.10 8.10	3.86 0.17	2.27 0.12	1.75 0.10	1.23 0.08

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	6.2	7.0	4.9
25 Feet from Roadway Edge	4.9	5.4	3.8
50 Feet from Roadway Edge	4.5	4.9	3.4
100 Feet from Roadway Edge	. 4.0	4.3	3.0

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year:

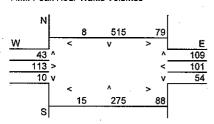
0.7 2005

Roadway Data

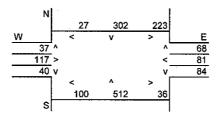
Intersection:

Walgrove Avenue and Palms Boulevard

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Walgrove Avenue Palms Boulevard

No. of Average Speed Roadway Type A.M Lanes At Grade 2 20 20 At Grade 2 20 20

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

1,029 544

N-S Road: E-W Road:

1,169 609

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A_2	A_3	· A ₄	В	С				
	Ref	erence CO	Concentra	tions.	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour									
North-South Road	14.0	7.6	5.7	4.0	1,029	6.93	1.00	0.54	0.41	0.29
East-West Road	3.7	2.7	2.2	1.7	544	6.93	0.14	0.10	80.0	0.06
P.M. Peak Traffic H	łour									
North-South Road	14.0	7.6	5.7	4.0	1,169	6.93	1.13	0.62	0.46	0.32
East-West Road	3.7	2.7	2.2	1.7	609	6.93	0.16	0.11	0.09	0.07

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	•
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	4.1	4.3	3.0
25 Feet from Roadway Edge	3.6	3.7	2.6
50 Feet from Roadway Edge	3.5	3.6	2.5
100 Feet from Roadway Edge	3.3	3.4	2.4

Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7

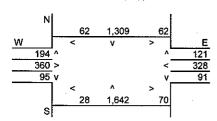
Analysis Year:

2005

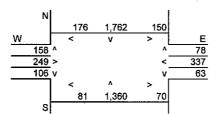
Roadway Data

Analysis Condition:

Centinela Avenue and Palms Boulevard


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Centinela Avenue Palms Boulevard

•	No. of	Average	Speed			
Roadway Type	Lanes	A.M.	P.M.			
At Grade	4	10	5			
At Grade	2	10	5			

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,390 E-W Road: 1,067

N-S Road: E-W Road: 3,684 1,107

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁ -	A ₂	A ₃	A ₄	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	tions ·
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic F	lour									
North-South Road	11.9	7.0	5.4	3.8	3,390	9.74	3.93	2.31	1.78	1.25
East-West Road	3.7	2.7	2.2	1.7	1,067	9.74	0.38	0.28	0.23	0.18
P.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	3,684	12.26	5.38	3.16	2.44	1.72
East-West Road	3.7	2.7	2.2	1.7	1,107	12.26	0.50	0.37	0.30	0.23

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	7.3	8.9	6.2
25 Feet from Roadway Edge	5.6	6.5	4.6
50 Feet from Roadway Edge	5.0	5.7	4.0
100 Feet from Roadway Edge	4.4	4.9	3.5

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

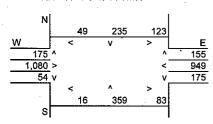
2.1

Persistence Factor: Analysis Year:

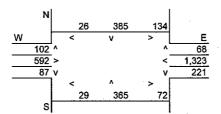
0.7 2005

Roadway Data

Intersection: Analysis Condition: Walgrove Avenue and Venice Boulevard


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Walgrove Avenue Venice Boulevard

	No. of	Average	age Speed		
Roadway Type	Lanes	A.M.	P.M.		
At Grade	2	20	20		
At Grade	6	20	20		

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,096 E-W Road: 2,565

N-S Road: 1,159 E-W Road: 2,410

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A_2	A_3	A_4	В	С				
	Reference CO Concentrations				Traffic	Emission	Estimated CO Concentrations			tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic F	lour									
North-South Road	3.7	2.7	2.2	1.7	1,096	6.93	0.28	0.21	0.17	0.13
East-West Road	9.5	6.1	4.9	3.5	2,565	6.93	1.69	1.08	0.87	0.62
P.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	1,159	6.93	0.30	0.22	0.18	0.14
East-West Road	9.5	6.1	4.9	3.5	2,410	6.93	1.59	1.02	0.82	0.58

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration² 8-Hour Emissions = ((Highest Peak Hour Concentration - Background 1-hour Concentration) x Persistence Factor) + Background 8-hour Concentration²

•	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.0	4.9	3.5
25 Feet from Roadway Edge	4.3	4.2	3.0
50 Feet from Roadway Edge	4.0	4.0	2.8
100 Feet from Roadway Edge	3.8	3.7	2.6

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year:

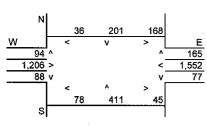
0.7 2005

Roadway Data

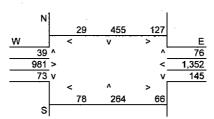
Intersection:

Beethoven Street and Venice Boulevard

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Beethoven Street Venice Boulevard

No. of Average Speed Roadway Type A.M. Lanes At Grade 15 20 At Grade 2 15 20

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,075 E-W Road: 3,213

N-S Road: 1,081 E-W Road: 2,747

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A_3	A_4	В	С				•
	Reference CO Concentrations				Traffic	Emission	Estimated CO Concentrations			tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E,O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour		•						,	
North-South Road	3.7	2.7	2.2	1.7	1,075	8.10	0.32	0.24	0.19	0.15
East-West Road	14.0	7.6	5.7	4.0	3,213	8.10	3.64	1.98	1.48	1.04
P.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	1,081	6.93	0.28	0.20	0.16	0.13
East-West Road	14.0	7.6	5.7	4.0	2,747	6.93	2.67	1.45	1.09	0.76

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	7.0	5.9	4.9
25 Feet from Roadway Edge	5.2	4.6	3.6
50 Feet from Roadway Edge	4.7	4.3	3.3
100 Feet from Roadway Edge	4.2	3.9	2.9

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

3.0

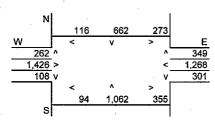
2.1

Persistence Factor: Analysis Year:

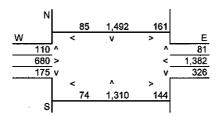
0.7 2005

Roadway Data

Intersection: Analysis Condition: Centinela Avenue and Venice Boulevard


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Centinela Avenue Venice Boulevard

	No. of	Average Speed			
Roadway Type	Lanes	A.M.	P.M.		
Át Grade	4	5	10		
At Grade	2	5	10		

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 2,724 E-W Road: 3,972

N-S Road: 3,521 E-W Road: 2,774

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A_2	A_3	A ₄	В	С				
	Ref	Reference CO Concentrations			Traffic	Emission	Estimated CO Concentrations			tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic F	lour									
North-South Road	3.3	2.6	2.2	1.7	2,724	12.26	1.10	0.87	0.73	0.57
East-West Road	14.0	7.6	5.7	4.0	3,972	12.26	6.82	3.70	2.78	1.95
P.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	3,521	9.74	4.08	2.40	1.85	1.30
East-West Road	3.7	2.7	2.2	1.7	2.774	9.74	1.00	0.73	0.59	0.46

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

	A.M.	P.M.		
	Peak Hour	Peak Hour	8-Hour	
Roadway Edge	10.9	8.1	7.6	
25 Feet from Roadway Edge	7.6	6.1	5.3	
50 Feet from Roadway Edge	6.5	5.4	4.6	
100 Feet from Roadway Edge	5.5	4.8	3.9	

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

3.0

2.1

Persistence Factor: Analysis Year:

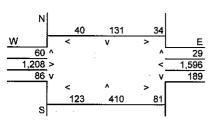
0.7 2005

Roadway Data

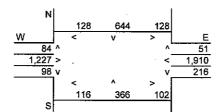
Intersection:

Inglewood Boulevard and Venice Boulevard

Analysis Condition:


Existing (2005) Traffic Conditions

North-South Roadway: East-West Roadway:


Inglewood Boulevard Venice Boulevard

No. of Roadway Type Lanes At Grade 2 At Grade 6

P.M. Peak Hour Traffic Volumes

Average Speed

5

A.M

15

15

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,020 E-W Road: 3,137

N-S Road: 1,542 E-W Road: 3,634

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	Α,	A ₂	A_3	A4	В	С				
	Reference CO Concentrations					Emission	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	1,020	8.10	0.31	0.22	0.18	0.14
East-West Road	9.5	6.1	4.9	3.5	3,137	8.10	2.41	1.55	1.24	0.89
P.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	1,542	12.26	0.70	0.51	0.42	0.32
East-West Road	9.5	6.1	4.9	3.5	3,634	12.26	4.23	2.72	2.18	1,56

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.7	7.9	5.6
25 Feet from Roadway Edge	4.8	6.2	4.4
50 Feet from Roadway Edge	4.4	5.6	3.9
100 Feet from Roadway Edge	4.0	4.9	3.4

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): 3.0

2.1

Persistence Factor: Analysis Year:

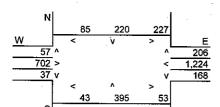
0.7 2010

Roadway Data

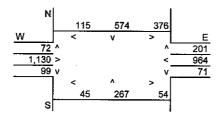
Intersection:

20th Street and Pico Boulevard

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


20th Street Pico Boulevard

No. of Average Speed Roadway Type A.M Lanes At Grade 20 20 At Grade 20 20

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

1,605

2,796

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

1,190 2,580

N-S Road: E-W Road:

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A_2	A_3	A_4	В	С				
•	Ref	егепсе СО	Concentra	tions	Traffic	Emission	Esti	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H										
North-South Road	3.3	2.6	2.2	1.7	1,190	4.51	0.18	0.14	0.12	0.09
East-West Road	11.9	7.0	5.4	3.8	2,580	4.51	1.38	0.81	0.63	0.44
P.M. Peak Traffic H	lour									
North-South Road	3.3	2.6	2.2	1.7	1,605	4.51	0.24	0.19	0.16	0.12
East-West Road	11.9	7.0	5.4	3.8	2,796	4.51	1.50	0.88	0.68	0.48

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
•	. Peak Hour	Peak Hour	8-Hour
Roadway Edge	4.6	4.7	3.3
25 Feet from Roadway Edge	4.0	4.1	2.8
50 Feet from Roadway Edge	3.7	3.8	2.7
100 Feet from Roadway Edge	3.5	3.6	2.5

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

U SISTINIO SISTINIO

Background 8-hour (Persistence Factor: 2.1

Persistence Factor
Analysis Year:

0.7 2010

Roadway Data

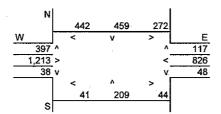
Intersection: Analysis Condition: Cloverfield Boulevard and Pico Boulevard

Future (2010) With Project Traffic Conditions

Pico Boulevard


North-South Roadway: East-West Roadway: Cloverfield Boulevard

 Roadway Type
 No. of Lanes
 Average Speed


 At Grade
 2
 20
 20

 At Grade
 4
 20
 20

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,810 E-W Road: 2,637 N-S Road: 1,896 E-W Road: 2,957

Roadway CO Contributions and Concentrations

Emissions = (A x B x C) / 100,000¹

	A ₁	A ₂	A_3	A ₄	В	C				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	Estimated CO Concentrations		
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ² .	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road East-West Road	lour 3.7 11.9	2.7 7.0	2.2	1.7	1,810	4.51 4.51	0.30 1.41	0.22 0.83	0.18 0.64	0.14 0.45
P.M. Peak Traffic H		7.0	5.4	3.8	2,637	4.51	1.41	0.03	0.04	0.45
North-South Road	3.7	2.7	2.2	1.7	1.896	4.51	0.32	0.23	0.19	0.15
East-West Road	11.9	7.0	5.4	3.8	2.957	4.51	1.59	0.23	0.72	0.13

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	4.7	4.9	3.4
25 Feet from Roadway Edge	4.1	4.2	2.9
50 Feet from Roadway Edge	3.8	3.9	2.7
100 Feet from Roadway Edge	3.6	3.7	2.6

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm): Persistence Factor:

2.1

Analysis Year:

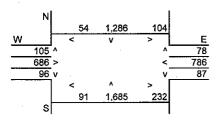
0.7 2010

Roadway Data

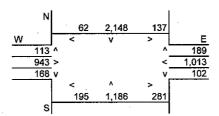
Intersection:

Bundy Drive and Pico Boulevard

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Bundy Drive Pico Boulevard

*	NO. OI	Average Speel			
Roadway Type	Lanes	A.M.	P.M.		
At Grade	6	15	5		
At Grade	4	15	5		

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,477 E-W Road: 1,973

N-S Road: 4,080 E-W Road: 2,665

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	Α,	A_2	A_3	. A ₄	В	С				
-	Refe	erence CO	Concentra	tions	Traffic	Emission	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road East-West Road	lour 9.5 3.3	6.1 2.6	4.9 2.2	3.5 1.7	3,477 1,973	5.23 5.23	1.73 0.34	1,11 0,27	0.89 0.23	0.64 0.18
P.M. Peak Traffic F North-South Road East-West Road	lour 9.5 3.3	6.1 2.6	4.9 2.2	3.5 1.7	4,080 2,665	7.75 7.75	3.00 0.68	1.93 0.54	1.55 0.45	1.11 0.35

Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.1	6.7	4.7
25 Feet from Roadway Edge	4.4	5.5	3.8
50 Feet from Roadway Edge	4.1	5.0	3.5
100 Feet from Roadway Edge	3.8	4.5	3.1

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm):

SCAQMD Station 091 3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

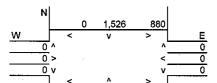
0.7 2010

Analysis Year: Roadway Data

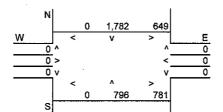
Intersection:

Bundy Drive and I-10 Freeway EB On-Ramp

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway:	Bun
East-West Roadway:	1-10


ndy Drive I-10 Freeway EB On-Ramp

	NO. OT	Average Spee			
Roadway Type	Lanes	A.M.	P.M.		
At Grade	4	5	15		
At Grada	2	_	15		

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,916 E-W Road: 1,500

N-S Road: 3,359 E-W Road: 1,430

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A_2	A_3	A ₄	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
	,									
A.M. Peak Traffic I	lour									
North-South Road	11.9	7.0	5.4	3.8	3,916	7.75	3.61	2.12	1.64	1.15
East-West Road	3.7	2.7	2.2	1.7	1,500	7.75	0.43	0.31	0.26	0.20
P.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	3,359	5.23	2.09	1.23	0.95	0.67
East-West Road	3.7	2.7	2.2	1,7	1,430	5.23	0.28	0.20	0.16	0.13

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	7.0	5.4	4.9
25 Feet from Roadway Edge	5.4	4.4	3.8
50 Feet from Roadway Edge	4.9	4.1	3.4
100 Feet from Roadway Edge	4.4	3.8	3.0

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7

Analysis Year:

2010

Roadway Data

Intersection:

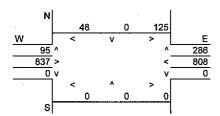
20th Street and Ocean Park Boulevard

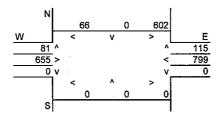
Analysis Condition:

Future (2010) With Project Traffic Conditions

North-South Roadway:

20th Street


No. of Roadway Type Lanes At Grade At Grade 4


East-West Roadway:

A.M. Peak Hour Traffic Volumes

Ocean Park Boulevard

P.M. Peak Hour Traffic Volumes

Average Speed

P.M.

20

20

A.M.

20

20

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

554 2,056 N-S Road: E-W Road:

864 2,171

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A_2	A_3	A ₄	В	С					
	Refe	erence CO	Concentra	tions	Traffic	Emission	Esti	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet	
A.M. Peak Traffic F	lour										
North-South Road	3.7	2.7	2.2	1.7	554	4.51	0.09	0.07	0.05	0.04	
East-West Road	11.9	7.0	5.4	3.8	2,056	4.51	1.10	0.65	0.50	0.35	
P.M. Peak Traffic H	lour			•							
North-South Road	3.7	2.7	2.2	1.7	864	4.51	0.14	0.11	0.09	0.07	
East-West Road	11.9	7.0	5.4	3.8	2,171	4.51	1.16	0.68	0.53	0.37	

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

·	A.M.	P.M.		
	Peak Hour	Peak Hour	8-Hour	
Roadway Edge	4.2	4.3	3.0	
25 Feet from Roadway Edge	3.7	3.8	2.7	
50 Feet from Roadway Edge	3.6	3.6	2.5	
100 Feet from Roadway Edge	3.4	3.4	2.4	

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

3.0 2.1

Persistence Factor:

2.1 0.7

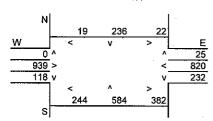
Analysis Year:

2010

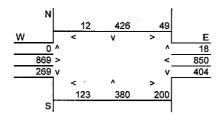
Roadway Data

Intersection: Analysis Condition: 23rd Street and Ocean Park Boulevard

Future (2010) With Project Traffic Conditions


North-South Roadway: East-West Roadway:

23rd Street Ocean Park Boulevard
 Roadway Type
 No. of Lanes
 Average Speed


 At Grade
 2
 15
 5

 At Grade
 4
 15
 5

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,796 E-W Road: 2,420 N-S Road: 1,802 E-W Road: 2,390

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	Ai	A_2	A ₃	A_4	В	С				
	Refe	erence CO	Concentra	tions	Traffic	Emission	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road East-West Road	lour 3.7 11.9	2.7 - 7.0	2.2 5.4	1.7 3.8	1,796 2,420	5.23 5.23	0.35 1.50	0.25 0.89	0.21 0.68	0.16 0.48
P.M. Peak Traffic H North-South Road East-West Road	lour 3.7 11.9	2.7 7.0	2.2 5.4	1.7 3.8	1,802 2,390	7.75 7.75	0.52 2.20	0.38 1.30	0.31 1.00	0.24 0.70

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	4.9	5.7	4.0
25 Feet from Roadway Edge	4.1	4.7	3.3
50 Feet from Roadway Edge	3.9	4.3	3.0
100 Feet from Roadway Edge	3.6	3.9	2.8

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

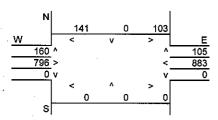
0.7 2010

Roadway Data

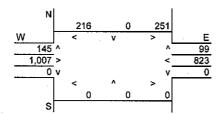
Analysis Year:

Intersection: Analysis Condition: Cloverfield Boulevard and Ocean Park Boulevard

- Ent


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Cloverfield Boulevard Ocean Park Boulevard

	No. or	Average Speed		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	2	20	20	
At Grade	4	20	20	

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

509 1,980 N-S Road: E-W Road:

711 2,191

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^1$

	A_t	A_2	A_3	A ₄	В	С				
•	Ref	Reference CO Concentrations				Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road	lour 3.7	2.7	2.2	1.7	509	4.51	0.08	0.06	0.05	0.04
East-West Road	11.9	7.0	5.4	3.8	1,980	4.51	1.06	0.62	0.48	0.34
P.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	711	4.51	0.12	0.09	0.07	0.05
East-West Road	11.9	7.0	5.4	3.8	2,191	4.51	1.17	0.69	0.53	0.38

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	4.1	4.3	3.0
25 Feet from Roadway Edge	3.7	3.8	2.6
50 Feet from Roadway Edge	3.5	3.6	2.5
100 Feet from Roadway Edge	3.4	3.4	2.4

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year: 0.7 2010

Roadway Data

Intersection: Analysis Condition: Bundy Drive and Ocean Park Boulevard

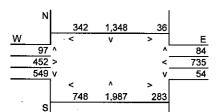
.

Future (2010) With Project Traffic Conditions

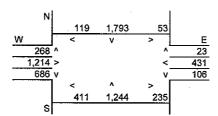
North-South Roadway: East-West Roadway:

Bundy Drive

Ocean Park Boulevard


 Roadway Type
 No. of Lanes
 Average Speed

 At Grade
 4
 5
 5


 At Grade
 4
 5
 5

A MA Destruction Tries William

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 4,969 E-W Road: 2,923 N-S Road: 4,475 E-W Road: 3,129

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A_3	A ₄	В	С					
	Reference CO Concentrations				Traffic	Traffic Emission	Est	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet	
A.M. Peak Traffic I	lour										
North-South Road	11.9	7.0	5.4	3.8	4,969	7.75	4.58	2.69	2.08	1,46	
East-West Road	3.3	2.6	2.2	1.7	2,923	7.75	0.75	0.59	0.50	0.38	
P.M. Peak Traffic I	lour										
North-South Road	11.9	7.0	5.4	3.8	4,475	7.75	4.12	2.43	1.87	1.32	
East-West Road	3.3	2.6	2.2	1.7	3,129	7.75	0.80	0.63	0.53	0.41	

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.		
	Peak Hour	Peak Hour	8-Hour	
Roadway Edge	8.3	7.9	5.8	
25 Feet from Roadway Edge	6.3	6.1	4.4	
50 Feet from Roadway Edge	5.6	5.4	3.9	
100 Feet from Roadway Edge	4.8	4.7	3.4	

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

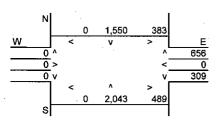
2.1 Persistence Factor: 0.7

Analysis Year:

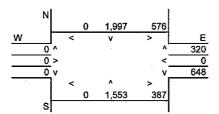
2010

Roadway Data

Intersection:


Bundy Drive and National Boulevard

Analysis Condition:


Future (2010) With Project Traffic Conditions

No. of Average Speed Roadway Type Á.M Lanes North-South Roadway: **Bundy Drive** At Grade 5 10 East-West Roadway: National Boulevard At Grade 5 10

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 4,632 E-W Road: 1,837

N-S Road: 4,585 E-W Road: 1,931

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A_2	A_3	A_4	В	С				
Reference CO Concentrations			Traffic	Traffic Emission	Est	imated CO	Concentra	tions		
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	4,632	7.75	4.27	2.51	1.94	1.36
East-West Road	3.3	2.6	2.2	1.7	1,837	7.75	0.47	0.37	0.31	0.24
P.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	4,585	6.25	3.41	2.00	1.55	1.09
East-West Road	3.3	2.6	2.2	1.7	1.931	6.25	0.40	0.31	0.27	0.21

Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

	P.M.			
•	Peak Hour	Peak Hour	8-Hour	
Roadway Edge	7.7	6.8	5.4	
25 Feet from Roadway Edge	5.9	5.3	4.1	
50 Feet from Roadway Edge	5.3	4.8	3.7	
100 Feet from Roadway Edge	4.6	4.3	3.2	

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

SCAQMD Station 091

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year:

0.7 2010

Roadway Data

Intersection:

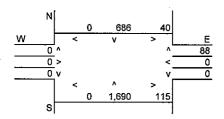
23rd Street/Walgrove Avenue and Airport Avenue

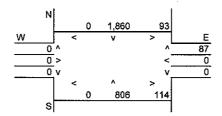
Analysis Condition:

Futue (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:

23rd Street/Walgrove Avenu-Airport Avenue


Roadway Type At Grade At Grade


A.M Lanes 2 5 20 2 5 5

Average Speed

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

No. of

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 2,504 E-W Road:

N-S Road: E-W Road:

2,846 294

Roadway CO Contributions and Concentrations

243

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A_3	A_4	В	С				
Reference CO Concentrations				Traffic	Emission	Est	imated CO	Concentra	tions	
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic F	lour									
North-South Road	14.0	7.6	5.7	4.0	2,504	7.75	2.72	1.47	1.11	0.78
East-West Road	3.7	2.7	2.2	1.7	243	7.75	0.07	0.05	0.04	0.03
P.M. Peak Traffic H	lour									
North-South Road	14.0	7.6	5.7	4.0	2,846	4.51	1.80	0.97	0.73	0.51
East-West Road	3.7	2.7	2.2	1.7	294	7.75	0.08	0.06	0.05	0.04

Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.		
•	Peak Hour	Peak Hour	8-Hour	
Roadway Edge	5.8	4.9	4.0	
25 Feet from Roadway Edge	4.5	4.0	3.2	
50 Feet from Roadway Edge	4.1	3.8	2.9	
100 Feet from Roadway Edge	3.8	3.6	2.7	

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year:

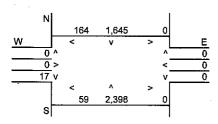
0.7 2010

Roadway Data

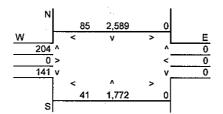
Intersection:

Bundy Drive and Airport Avenue

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Bundy Drive Airport Avenue

No. of Average Speed A.M Roadway Type Lanes At Grade 10 20 At Grade 2 20 10

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

471

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

4,207

N-S Road: 4,650 E-W Road:

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A ₂	A_3	A_4	В	С				
	Reference CO Concentrations				Traffic	Emission	Esti	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
						·				
A.M. Peak Traffic F	lour									
North-South Road	11.9	7.0	5.4	3.8	4,207	4.51	2.26	1.33	1.02	0.72
East-West Road	3.7	2.7	2.2	1.7	240	4.51	0.04	0.03	0.02	0.02
P.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	4,650	6.25	3.46	2.03	1.57	1.10
East-West Road	3.7	2.7	2.2	1.7	471	6.25	0.11	80.0	0.06	0.05

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.		
	Peak Hour	Peak Hour	8-Hour	
Roadway Edge	5.3	6.6	4.6	
25 Feet from Roadway Edge	4.4	5.1	3.6	
50 Feet from Roadway Edge	4.0	4.6	3.2	
100 Feet from Roadway Edge	3.7	4.2	2.9	

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm):

SCAQMD Station 091

Background 8-hour CO Concentration (ppm):

3.0

Persistence Factor:

2.1

Analysis Year:

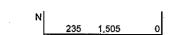
0.7 2010

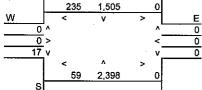
Roadway Data

Intersection:

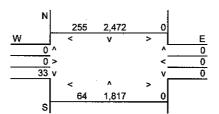
Bundy Drive and Project Driveway

Analysis Condition:


Future (2010) With Project Traffic Conditions


North-South Roadway: East-West Roadway:

Bundy Drive Project Driveway


	No. of	Average	e Speed
Roadway Type	Lanes	A,M.	P.M.
At Grade	4 .	15	15
At Grade	2	15	15

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 4,138 E-W Road: 311

N-S Road: 4,544 E-W Road: 352

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A ₂	A_3	A_4	В	С				
Reference CO Concentrations				Traffic	Emission	Est	imated CO	Concentra	tions	
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic I	lour									
North-South Road	11.9	7.0	5.4	3.8	4,138	5.23	2.57	1.51	1.17	0.82
East-West Road	3.7	2.7	2.2	1.7	311	5.23	0.06	0.04	0.04	0.03
P.M. Peak Traffic I	lour									
North-South Road	11.9	7.0	5.4	3.8	4,544	5.23	2.83	1.66	1.28	0.90
East-West Road	3.7	2.7	2.2	1.7	352	5.23	0.07	0.05	0.04	0.03

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

•	A.M.	P.M.		
	Peak Hour	Peak Hour	8-Hour	
Roadway Edge	5.6	5.9	4.1	
25 Feet from Roadway Edge	4.6	4.7	3.3	
50 Feet from Roadway Edge	4.2	4.3	3.0	
100 Feet from Roadway Edge	3.8	3.9	2.8	

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year:

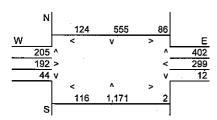
0.7 2010

Roadway Data

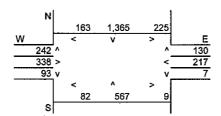
Intersection:

Walgrove Avenue and Rose Avenue

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Walgrove Avenue Rose Avenue

	No. of	Average	e Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	2	5	5
At Grade	2	5	5

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 2,543 E-W Road: 993

N-S Road: 2,692 1,135 E-W Road:

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A_2	A ₃	A ₄	В	С				
Reference CO Concentrations				Traffic	Emission	Estimated CO Concentrations				
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour						-			
North-South Road	14.0	7.6	5.7	4.0	2,543	7.75	2.76	1.50	1.12	0.79
East-West Road	3.7	2.7	2.2	1.7	993	7.75	0.28	0.21	0.17	0.13
P.M. Peak Traffic H	lour									
North-South Road	14.0	7.6	5.7	4.0	2,692	7.75	2.92	1.58	1.19	0.83
East-West Road	3.7	2.7	2.2	1.7	1,135	7.75	0.33	0.24	0.19	0.15

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	6.0	6.2	4.4
25 Feet from Roadway Edge	4.7	4.8	3.4
50 Feet from Roadway Edge	4.3	4.4	3.1
100 Feet from Roadway Edge	3.9	4.0	2.8

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor: Analysis Year:

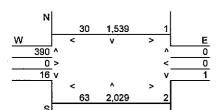
0.7 2010

Roadway Data

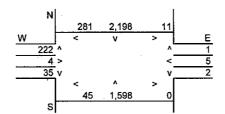
Intersection:

Centinela Avenue and Rose Avenue

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Centinela Avenue Rose Avenue

	No. of	Average Spee				
Roadway Type	Lanes	A.M.	P.M.			
At Grade	4	20	10			
At Grade	2	20	10			

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

592

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,989 E-W Road: 499

N-S Road: 4,311 E-W Road:

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A_2	A ₃	A_4	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic h	lour									
North-South Road	11.9	7.0	5.4	3.8	3,989	4.51	2.14	1.26	0.97	0.68
East-West Road	3.7	2.7	2.2	1.7	499	4.51	80.0	0.06	0.05	0.04
P.M. Peak Traffic H	lour					-				
North-South Road	11.9	7.0	5.4	3.8	4,311	6.25	3.20	1.88	1.45	1.02
East-West Road	3.7	2.7	2.2	1.7	592	6.25	0.14	0.10	0.08	0.06

Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.2	6.3	4.4
25 Feet from Roadway Edge	4.3	5.0	3.5
50 Feet from Roadway Edge	4.0	4.5	3.2
100 Feet from Roadway Edge	3.7	4.1	2.9

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

SCAQMD Station 091

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

3.0

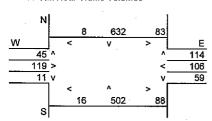
2.1

Persistence Factor: Analysis Year:

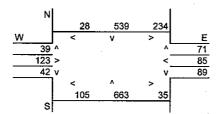
0.7 2010

Roadway Data

Intersection: Analysis Condition: Walgrove Avenue and Palms Boulevard


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Walgrove Avenue Palms Boulevard

-	No. of	Average Speed				
Roadway Type	Lanes	A.M.	P.M.			
At Grade	2	. 20	20			
At Grade	2	20	20			

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,384 E-W Road: 569

N-S Road: 1,574 E-W Road: 637

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^1$

	A ₁	A_2	A ₃	A_4	В	С				
	Refe	erence CO	Concentra	tions	Traffic	Emission	Esti	mated CO	Concentral	tions
Roadway	E.O.R,	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E,O.R.	25 Feet	50 Feet.	100 Feet
A.M. Peak Traffic h	lour									
North-South Road	14.0	7.6	5.7	4.0	1,384	4.51	0.87	0.47	0.36	0.25
East-West Road	3.7	2.7	2.2	1.7	569	4.51	0.09	0.07	0.06	0.04
P.M. Peak Traffic H	lour									
North-South Road	14.0	7.6	5.7	4.0	1,574	4.51	0.99	0.54	0.40	0.28
East-West Road	3.7	2.7	2.2	1.7	637	4.51	0.11	0.08	0.06	0.05

Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	4.0	4.1	2.9
25 Feet from Roadway Edge	3.5	3.6	2.5
50 Feet from Roadway Edge	3.4	3.5	2.4
100 Feet from Roadway Edge	3.3	3.3	2.3

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7

Analysis Year:

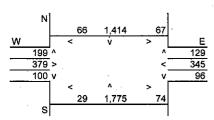
2010

Roadway Data

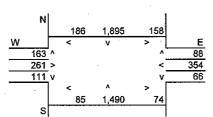
Intersection:

Centinela Avenue and Palms Boulevard

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Centinela Avenue Palms Boulevard

	No. of	Average Spee			
Roadway Type	Lanes	A.M.	P.M.		
At Grade	4	5	5		
At Grade	2	5	. 5		

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

3,980 1,160

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 3,650 E-W Road: 1,118

N-S Road: E-W Road:

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A ₁	A ₂	. A ₃	A_4	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
			·				•			
A.M. Peak Traffic H	lour									
North-South Road	11.9	7.0	5.4	3.8	3,650	7.75	3.36	1.98	1.53	1.07
East-West Road	3.7	2.7	2.2	1.7	1,118	7.75	0.32	0.23	0.19	0.15
P.M. Peak Traffic H	lour .									
North-South Road	11.9	7.0	5.4	3.8	3,980	7.75	3.67	2.16	1.66	1.17
East-West Road	3.7	2.7	2.2	1.7	1,160	7.75	0.33	0.24	0.20	0.15

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

A.M.	P.M.	
Peak Hour	Peak Hour	8-Hour
6.7	7.0	4.9
5.2	5.4	3.8
4.7	4.9	3.4
4.2	4.3	3.0
	Peak Hour 6.7 5.2 4.7	Peak Hour Peak Hour 6.7 7.0 5.2 5.4 4.7 4.9

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

Persistence Factor:

2.1 0.7

Analysis Year:

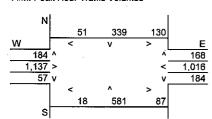
2010

Roadway Data

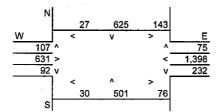
Intersection:

Walgrove Avenue and Venice Boulevard

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Walgrove Avenue Venice Boulevard

No. of Average Speed Roadway Type A.M. Lanes At Grade 2 10 10 At Grade 6 10 10

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,453 E-W Road: 2,722 N-S Road: 1,556 E-W Road: 2,555

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

•	A_1	A_2	A ₃	A ₄	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Est	imated CO	Concentra	tions
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	1,453	6.25	0.34	0.24	0.20	0.15
East-West Road	9.5	6.1	4.9	3.5	2,722	6.25	1.61	1.04	0.83	0.59
P.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	1,556	6.25	0.36	0.26	0.21	0.17
East-West Road	9.5	6.1	4.9	3.5	2,555	6.25	1.52	0.97	0.78	0.56

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
•	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.0	4.9	3.5
25 Feet from Roadway Edge	4.3	4.2	3.0
50 Feet from Roadway Edge	4.0	4.0	2.8
100 Feet from Roadway Edge	3.7	3.7	2.6

Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO:

SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

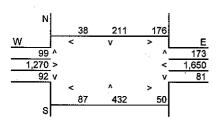
Background 8-hour CO Concentration (ppm): Persistence Factor:

2,1

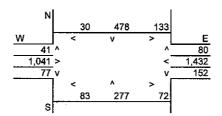
Persistence Factor Analysis Year: 0.7 2010

Roadway Data

Intersection: Analysis Condition: Beethoven Street and Venice Boulevard


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Beethoven Street Venice Boulevard

	No. of	Average Spee		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	2	15	20	
At Grade	2	15	20	

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: E-W Road:

1,129 3,400 N-S Road: E-W Road:

1,139 2,910

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

•	A_1	A_2	A_3	A_4	В	С				
	Ref	erence CO	Concentra	tions	Traffic	Emission	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road East-West Road	lour 3.7 14.0	2.7 7.6	2.2 5.7	1.7 4.0	1,129 3,400	5.23 5.23	0.22 2.49	0.16 1.35	0.13 1.01	0.10 0.71
P.M. Peak Traffic H North-South Road East-West Road	lour 3.7 14.0	2.7 7.6	2.2 5.7	1.7 4.0	1,139 2,910	4.51 4.51	0.19 1.84	0.14 1.00	0.11 0.75	0.09 0.52

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	5.7	5.0	4.0
25 Feet from Roadway Edge	4.5	4.1	3.2
50 Feet from Roadway Edge	4.1	3.9	2.9
100 Feet from Roadway Edge	3.8	3.6	2.7

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

SCAQMD Station 091 Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

0.7

Analysis Year:

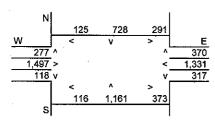
2010

Roadway Data

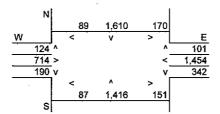
Intersection:

Centinela Avenue and Venice Boulevard

Analysis Condition:


Future (2010) With Project Traffic Conditions

North-South Roadway: East-West Roadway:


Centinela Avenue Venice Boulevard

		No. of	_ Average Speed				
	Roadway Type	Lanes	À.M.	P.M			
_	At Grade	4	, Š	5			
	At Grade	2	5	5			

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 2,952 E-W Road: 4,179

N-S Road: 3,796 E-W Road: 2,932

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_1	A_2	A_3	A_4	В	С		-		
	Ref	erence CO	Concentra	tions	Traffic	Emission	Estimated CO Concentrations			
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H North-South Road	lour 3.3	26	2.2	17	2.952	775	0.75	0.50	0.50	0.20
East-West Road	14.0	2.6 7.6	2.2 5.7	1.7 4.0	4,179	7.75 7.75	0.75 4.53	0.59 2.46	0.50 1.85	0.39 1.29
P.M. Peak Traffic H	lour									
North-South Road East-West Road	11.9 3.7	7.0 2.7	5.4 2.2	3.8 1.7	3,796 2,932	7.75 7.75	3.50 0.84	2.06 0.61	1.59 0.50	1.12 0.39

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

	A.M.	P.M.			
	Peak Hour	Peak Hour	8-Hour		
Roadway Edge	8.3	7.3	5.8		
25 Feet from Roadway Edge	6.1	5.7	4.2		
50 Feet from Roadway Edge	5.3	51	3.7		
100 Feet from Roadway Edge	4.7	4.5	3.3		

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).

Project Title: SMC Bundy Campus

Background Information

Nearest Air Monitoring Station measuring CO: SCAQMD Station 091

Background 1-hour CO Concentration (ppm):

3.0

Background 8-hour CO Concentration (ppm):

2.1

Persistence Factor:

2.1 0.7

Analysis Year:

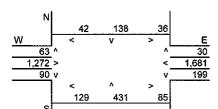
2010

Roadway Data

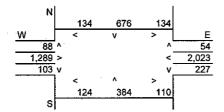
Intersection: Analysis Condition: Inglewood Boulevard and Venice Boulevard

Fı

Future (2010) With Project Traffic Conditions


North-South Roadway: East-West Roadway:

Inglewood Boulevard Venice Boulevard
 Roadway Type
 No. of Lanes
 Average Speed


 At Grade
 2
 15
 5

 At Grade
 6
 15
 5

A.M. Peak Hour Traffic Volumes

P.M. Peak Hour Traffic Volumes

Highest Traffic Volumes (Vehicles per Hour)

N-S Road: 1,072 E-W Road: 3,303 N-S Road: 1,624 E-W Road: 3,837

Roadway CO Contributions and Concentrations

Emissions = $(A \times B \times C) / 100,000^{1}$

	A_t	A ₂	A ₃	A_4	В	С				
	Reference CO Concentrations			Traffic	Emission	Estimated CO Concentrations			tions	
Roadway	E.O.R.	25 Feet	50 Feet	100 Feet	Volume	Factors ²	E.O.R.	25 Feet	50 Feet	100 Feet
A.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	1,072	5.23	0.21	0.15	0.12	0.10
East-West Road	9.5	6.1	4.9	3.5	3,303	5.23	1.64	1.05	0.85	0.60
P.M. Peak Traffic H	lour									
North-South Road	3.7	2.7	2.2	1.7	1,624	7.75	0.47	0.34	0.28	0.21
East-West Road	9.5	6.1	4.9	3.5	3,837	7.75	2.82	1.81	1.46	1.04

¹ Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

Total Roadway CO Concentrations

Peak Hour Emissions = North-South Concentration + East-West Concentration + Background 1-hour Concentration²

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
Roadway Edge	4.8	6.3	4.4
25 Feet from Roadway Edge	4.2	5.2	3.6
50 Feet from Roadway Edge	4.0	4.7	3.3
100 Feet from Roadway Edge	3.7	4.3	3.0

² Methodology from Bay Area Air Quality Management District BAAQMD CEQA Guidelines (1996).

² Emission factors from EMFAC2002 (2003).